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ABSTRACT 

The purpose of this thesis is to develop a textbook which presents basic concepts 

of matrix algebra from a primarily computational perspective, for an introductory course in 

matrix algebra at the Naval Postgraduate School (NPS). The need for an introductory matrix 

algebra text is generated by the unique characteristics of the student body at NPS. Students 

at NPS are beginning graduate studies after several years away form the academic environ- 

ment. As a result, most students benefit from a course which presents fundamental concepts 

and techniques in solving matrix algebra problems which are needed for advanced studies 

in mathematics, engineering, and operations research. Current publications in matrix al- 

gebra go into more detail on linear algebra than is needed for the introductory course and 

many texts do not cover complex numbers in sufficient detail to meet the needs of the stu- 

dents. This text presents techniques for solving systems of linear equations, the algebra of 

matrices, the connection between linear systems and algebraic operations on matrices, and 

an introduction to eigenvalues, eigenvectors, and complex numbers. The intent is to home 

student skills in applying fundamental techniques in matrix algebra essential to success in 

future courses. 
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I.       MATRIX ALGEBRA 

Matrix algebra is the study of algebraic operations on matrices and their applications 

to solving systems of linear equations. Systems of linear equations occur in fields such as 

engineering, economics, sociology and the physical sciences. We need to understand the 

fundamentals of matrix algebra in order to solve systems of linear equations which make 

up a large percentage of mathematical problems in these fields. Because of the wide range of 

disciplines which require the understanding and ability to apply the basic concepts of matrix 

algebra, a need exists for a manual to accompany a course which presents the basic concepts 

from a computational perspective rather than the more in-depth theoretical approach of 

current publications. Students from different disciplines can use this text to learn the basic 

tools of matrix algebra and begin applying those tools immediately. Those students who 

require a more in-depth understanding of the subject of matrix algebra will benefit from 

a clear understanding of the fundamentals presented in this manual and will be prepared 

for follow-on courses. This thesis project provides a textbook which presents techniques 

for solving systems of linear equations, the algebra of matrices, the connection between 

linear systems and algebraic operations on matrices, and an introduction to eigenvalues, 

eigenvectors and complex numbers. 

Chapter One of the text begins with methods for solving homogeneous and nonho- 

mogeneous systems of linear equations. The methods presented are substitution, Gaussian 

elimination, and Gauss-Jordan elimination. In the process of learning to solve linear sys- 

tems students learn the three types of solutions a linear system can have, the representation 

of a linear system as an augmented matrix, the row echelon and reduced row echelon forms 

of a matrix, and elementary row operations. The first chapter concludes with a look at the 

use of computers and the need to understand types of computer error in solving systems of 

linear equations. 

In Chapter Two, the student is introduced to the algebra of vectors and matrices. 

Students learn to add, subtract, and multiply vectors and matrices. Using the dot product of 

vectors, the student can compute the magnitude of a vector and apply the Law of Cosines 



to compute the angle between two vectors. Additionally, some properties of matrices are 

given along with an explanation of what it means for a matrix to be square, symmetric, or 

a transpose of another matrix. The techniques learned in Chapters One and Two are used in 

Chapter Three. 

The connection between linear systems and algebraic operations on matrices is made 

in Chapter Three. This chapter also includes the concept of a linear combination of vec- 

tors and how a linear combination applies to the definition of the span of a set of vectors. 

The next topic of discussion is linear dependence of vectors. The student learns how to 

determine the linear dependence relationship in a set of vectors using the solution to the 

homogeneous system of linear equations. The chapter concludes with the study of ma- 

trix transformations and the necessary conditions for a matrix transformation to be a linear 

transformation. 

Elementary matrices are presented and applied in Chapter Four to motivate the con- 

cept of the inverse of a matrix and the factorization of a matrix into a lower and an upper 

triangular matrix, known as LU Decomposition. Using the inverse and the LU Decompo- 

sition of a matrix, the student learns two additional methods for solving a system of linear 

equations. The next topic is to characterize a matrix as singular or nonsingular by calculat- 

ing the determinant of a matrix. The methods for calculating the determinant use elementary 

row operations and cofactor expansion. The chapter closes with the use of the determinant 

of a matrix in Cramer's Rule to find the solution to a linear system. 

The final chapter of the text presents the idea of eigenvalues and eigenvectors of 

a matrix. The procedure of solving the characteristic equation is used to find the eigen- 

values of a matrix, and the eigenvectors are found by solving the homogeneous system 

(A — XI) x = 0. Since the eigenvalues and eigenvectors can be real or complex, the text 

then defines the set of complex numbers and the rules of arithmetic for complex numbers. 

The text is designed with examples worked out in detail for each new concept pre- 

sented" Additionally applications based on simplified models of real world situations are 

presented early in the text to show relevance of the material. Each chapter concludes with 

exercises to practice the techniques taught. Solutions to exercises are in the appendix. 

This manual incorporates concepts from several different texts, published and un- 



published. Specifically, network applications adapted from Leon [Ref. 1], illustrations of 

ill-conditioned systems from Rasmussen [Ref. 2], applications for eigenvalues and eigen- 

vectors from Underwood [Ref. 3], exercises which clearly demonstrate key points about 

the span of a set of vectors and linear transformations adapted from Lay [Ref. 4], and im- 

portant concepts involving elementary matrices from Anton [Ref. 5]. Reference to these 

sources may clarify points that are not obvious otherwise. 

The study of matrix algebra is far more involved than the ideas presented in this 

manual. The intent of the text is specific: to provide students with the fundamental tools of 

matrix algebra essential to success in follow-on courses. 
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PREFACE 

The writing of this text is motivated by the need for a manual to accompany a course 

which presents basic concepts in linear algebra from a primarily computational perspective. 

The intent is to provide students with the building blocks and tools required for follow-on 

courses. 

The audience is assumed to include a mix of math students, operations research 

students, and engineering students. Upon completion of the text, students are prepared to 

pursue courses of study which provide more advanced topics and theory such as linear al- 

gebra, and courses which expand on the concepts taught and present nontrivial applications 

such as linear programming, differential equations, and introductory engineering courses. 

The author assumes students are familiar with algebra with respect to functions and 

first degree polynomial multiplication. 

The text is designed with examples for each new concept which are worked out 

in detail so that the student should have no trouble reading and understanding the process 

followed to obtain the solution. Applications are presented in various sections to introduce 

the material to be studied and to show relevant application of the material. The applications 

tend to be based on simplified models of real world situations because no familiarity with 

calculus or differential equations is assumed. Each chapter concludes with exercises to 

practice the concepts taught. Most of the exercises are numerical rather than theoretical. 

Solutions for all exercises are at the end of the text. 

We begin in Chapter 1 with an introduction to methods for solving linear equations 

and systems of linear equations. The methods introduced are substitution, Gaussian elimi- 

nation, and Gauss-Jordan elimination. In Chapter 2 the student is introduced to the algebra 

of vectors and matrices. Additionally, some special matrices are presented. The connection 

between linear systems and algebraic operations on matrices is made in Chapter 3. We also 

consider the concepts of linear combination, linear independence, and linear transforma- 

tion. In Chapter 4 we introduce elementary matrices, and use them to motivate the concept 

of the inverse of a matrix and the standard matrix factorization in the form of LU decom- 



position. The chapter concludes with methods for finding the determinant of a matrix and 

some basic properties of the determinant. The final chapter, Chapter 5, provides a brief in- 

troduction to the concept of eigenvalues and eigenvectors and includes the study of complex 

numbers so that the student can explore complex eigenvalues and eigenvectors. 

The material in this text can be covered in approximately 22 lecture hours. 

Suggested Syllabus: 

Chapter 1        Sections A-F       4 lectures 

Chapter 2       Sections A-B       3 lectures 

Chapter 3        Sections A-D       4 lectures 

Chapter 4        Sections A-D       6 lectures 

Chapter 5        Sections A-E       5 lectures 

Total lecture hours: 22 
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I.       SYSTEMS OF LINEAR EQUATIONS 

A large percentage of problems encountered in mathematics involve solving sys- 

tems of linear equations. Systems of linear equations also have applications in economics, 

industry, physical sciences, sociology and many other disciplines. This section will intro- 

duce nonhomogeneous and homogeneous systems of linear equations and three methods for 

solving systems of linear equations. We can use systems of linear equations to model real 

world problems. We begin with a simplified application of linear systems to the personnel 

staffing problem. 

Part of the management process in military organizations involves staffing. With the 

current reduction of forces, most military units are faced with a shortage of personnel. Com- 

manders must organize their units to promote maximum productivity while operating under 

personnel constraints. The personnel shortage is compounded by unforecast requirements, 

such as the need for a Crisis Action Team. 

Suppose a Crisis Action Team is needed to continually monitor and report on the 

tactical situation in an area of interest. The personnel who will make up this team must 

be taken out of existing departments; no new personnel are added to the organization. The 

commander wants to have the smallest team possible while still meeting the requirement 

that the team provide accurate and timely intelligence assessments of the situation in the area 

of interest. The commander decides to make a four-shift rotation schedule. The first shift 

is 2400 - 0600 hours. The second shift is 0600-1200 hours. The third shift is 1200-1800 

hours. The fourth shift is 1800-2400 hours. Each team member will work two consec- 

utive shifts and have the next two consecutive shifts off (twelve hours on, twelve hours 

off). Additionally, the commander decides each shift must have a least number of person- 

nel working to complete all tasks. The minimal staffing numbers are shown in Table 1. 

We can develop a mathematical model to help the commander decide how many personnel 

should begin working each shift so that shift staffing requirements are met while using the 



Shift Number of Personnel Required 
2400-0600 hours 4 
0600-1200 hours 6 
1200-1800 hours 8 
1800-2400 hours 6 

Table 1. Crisis Action Team Staffing Requirements 

minimum number of personnel. The variables are defined below: 

w is the number of personnel who begin working at 2400 
x is the number of personnel who begin working at 0600 
y is the number of personnel who begin working at 1200 
z is the number of personnel who begin working at 1800. 

Since we know the minimal shift staffing requirements, we can begin to formulate the equa- 

tions in the model. The personnel working during the 2400-0600 shift will be those who 

begin working at 1800 and those who begin at 2400. There must be at least four personnel 

on duty from 2400-0600 hours, so the first equation will be: 

# who begin working at 1800 + # who begin working at 2400 = # from 2400-0600 

z + w = 4. 

The second equation will be: 

# who begin working at 2400 + # who begin working at 0600 = # from 0600-1200 

w + x == 6. 

The third equation will be: 

# who begin working at 0600 + # who begin working at 1200 = # from 1200-1800 

x + y = 8. 

The fourth equation will be: 

# who begin working at 1200 + # who begin working at 1800 = # from 1800-2400 

y + z = 6. 



We can solve these four equations simultaneously: 

z + w   = =   4 
w + X     - =   6 
X + y = =   8 
y + z   = =   6. 

Solve for y in terms of z in the fourth equation: 

y = 6-z. 

Substitute for y in the third equation and solve for x in terms of z : 

x+6-z   =   8 

x   =   z + 2. 

Substitute for x in the second equation and solve for w in terms of; 

w+z+2   =   6 

w   =   —z + 4. 

Substitute for w in the first equation and solve for z : 

z + (-z + 4)   =   4 

4   =   4. 

This last equation is true for any value of z. We have defined each variable in terms of z: 

w = —z +4 
x = z+2 
y   =   -z   +   6 
Z    =        Z. 

Since z is the number of personnel who begin working at 1800, z can be 1,2,3,4,5, or 

6. We will not try any values larger than 6 because the requirement is for 6 personnel on 

duty from 1800 - 2400. The commander will minimize personnel usage if the number of 

personnel beginning work at 1800,z, is 4,5,or 6. The negative values for w are disregarded 

because we cannot have a negative number of people. The commander can now make a 



If zis 1 2 3 4 5 6 
Then x is 3 4 5 6 7 8 

yis 5 4 3 2 1 0 
t« is 3 2 1 0 -1 -2 

Total personnel required 11 10 9 8 8 8 

Table 2. Staffing Options 

decision about how to schedule the rotation of personnel. 

In reality, the commander would consider other factors, such as overlap of personnel 

on shifts to maintain operational continuity. This is a simplified example of how we can 

begin to solve real world issues by modeling the situation as a systems of linear equations. 

Let's find out what systems of linear equations are. We begin with linear equations. 

A. LINEAR EQUATIONS 

A linear equation is an equation which can be written in the form: 

a1x1 + a2x2 H 1- anxn = b, 

where a1}..., an and b are real numbers, and Xi,...,xn are variables. An equation of this 

form is linear if: 

1. Every variable occurs to the first power. 

2. No variable of the form a;c,where c is a constant not equal to one. 

3. There are no products of variables. 

4. No variables are arguments for radical, exponential, logarithmic, or trigono- 
metric functions. 

Example 1.1   The following are linear equations: 

3x + 4y = 7, xx + 2x2 -x3 = V8, 

llx-26y + z = ec    (ec is a constant),     8a; + 6y - 5 = 47^. 



Example 1.2   The following are nonlinear equations: 

2x2 + 7y = 7,     3x + 2y-xz = 4, 

sinx + y = Q,        y/x + 2y = l. 

Consider linear equations in different dimensions. In one dimension, a linear equa- 

tion has the form: 

ax = b, (i.i) 

where a and b are real numbers. If a = 0 and b ^ 0, this implies that 1.1 has no solution. If 

a = 0 and b = 0, this implies that 1.1 has infinitely many solutions. 

Example 1.3   Consider the equations: 

Ox = 7    and   Ox = 0. 

The equation Ox = 7 has no solution because no matter what x we choose, 0^7. The 
equation (te = 0 has infinitely many solutions because any value we choose for x will yield 
the result 0 = 0. 

In the plane, a linear equation has the form: 

ax + by = c, 

where a, b,md c are real numbers. In three dimensions, a linear equation has the form: 

ax + by + cz = d, 

where a, 6, c, and d are real numbers. In general, a linear equation has the form: 

axxi + a2x2 H h anxn .= 6, 

where ah...,an, and b are real numbers. 

' JA solution to a linear equation alXl + a2x2 + ■ ■: + anxn = b is a sequence of 

numbers (s1,s2,..., sn) such that the equation aiXj + a2x2 + ■■■ + anxn = bis true when 

we substitute the values st, s2,..., sn for the variables xux2,...,xn, respectively. Solving a 

linear equation means finding all such solutions. The set of all solutions is the solution set. 



Example 1.4   Find the solution set for the linear equation: 

6x-7y = 3. 

Solution: 

The general solution is represented by the following equations: 

{ 
x = ¥ + 1 
y =     t. 

For the solution we assign an arbitrary value to y and solve for x. The parameter t is an 
arbitrary real number. Each solution to the linear equation is uniquely determined as t varies 
over all possible real numbers. 

Example 1.5   Find the general solution for the linear equation: 

2x + 4y - lz = 8. ■ 

Solution: 

The general solution is represented by the following equations: 

x   =   -2s + \t + 4 
V   = s 
z   = t. 

Assign parameters s and t to the variables y and ^respectively, and solve for x. 

B. SYSTEMS OF LINEAR EQUATIONS 

A system of linear equations (linear system) is a finite set of one or more linear 

equations with the same variable set. An m x n system of linear equations is a linear 

system of ra equations in n unknowns of the form: 

anxi + 012X2 + • • • + ainxn   =   bi 

a2ixt + a22X2 H h a2nxn   =   b2 

amiXi + am2x2 H h amnxn   =   bm. 

The aij's (the coefficients) and the Vs are real numbers. The Xi's are the variables. 



Example 1.6 An example of a 2 x 2 system of linear equations, 2 equations in 2 unknowns, 
is: 

x\   +   2x2   =   5 
2rci   +   3x2   =   8. 

Example 1.7 An example of a 2 x 3 system of linear equations, 2 equations in 3 unknowns, 
is: 

5x1   -     x2   +   10^3   =      3 
—4x!   +   2x2   +     8x3   =   -1. 

A solution to a linear system is a sequence of numbers (sj, s2,..., sn) which simul- 

taneously satisfies each linear equation in the system of linear equations when we substitute 

the values sx, s2,..., sn for the variables xly x2,..., xn, in this order. Solving a system of lin- 

ear equations means finding all such solutions. The solution set is the set of all possible 

solutions. 

Example 1.8   Consider the linear system: 

-2x1   -   3x2   -   15x3   =      7 
6x1   +   2x2   +   lSx3   = '-8. 

(1, 2, -1) is a solution to this linear system because the values simultaneously satisfy each 
equation in the system. The values (1,7, -2) satisfy the first equation, but they do not 
satisfy the second equation; therefore, (1,7, -2) is not a solution to the linear system. The 
general solution is represented by the equations: 

X! = -12/7S-5/7 
x2 = -27/75-13/7 
x3   = s. 

A system of linear equations is said to be consistent if there exists at least one so- 

lution to the system. If no solution exists, the system is inconsistent. There are three possi- 

bilities for solution sets to linear systems: 

1. No solution. 

2. A unique solution. 

3. Infinitely many solutions. 

To visualize these possibilities in the rry-plane, consider that a solution to a system 

of linear equations is a point of intersection of the lines represented by the linear equations 

in the system. 



Example 1.9   A 2 x 2 system with no solution; see figure 1. 

A linear system with two linear equations in two variables can have no solution if 
the two lines are parallel. Consider the system given by: 

Solution: 

xi + 2x2 = 5 

xi + 2x2 = 7. 

x1+2*x2=5 

Figure 1. No Solution 

Solve for xi. 

Substitute into the second equation: 
xi = 5 — 2x2. 

5 - 2x2 + 2x2 = 7 

5 = 7. 

The last equation is not true; therefore, the system is inconsistent. 

Example 1.10   A 2 x 2 system with one solution; see figure 2. 

A linear system with two linear equations in two variables has exactly one solution 
when the lines in the system intersect at a single point. For instance, consider the system: 

6xx   +   2x2   =   10 
2xj   +     x2   =     2. 

Solution: 



20 

15 

10 

5 

0 

-5 

-10 

6*x1+2*x2=10 

2*x1+x2=2 

Solve the first equation for a^: 

Figure 2. One Solution 

xx 
1 5 
—Xo -\ . 
3 3 

Substitute the resulting expression into the second equation 

1 5\ 
r2+3j + x2 

~%2 3 

x2 = -4. 

Solve for x\. 

1/   ^     5 

-i--3(-4) + - 

xx =3. 

This linear system is the intersection of two lines at a single point.  The system has the 
unique solution (x1,x2) = (3, -4). 

Example 1.11   A 2 x 2 system with infinitely many solutions; see figure 3. 

A linear system with two equations in two variables has infinitely many solutions 
when the lines coincide. For example, consider the system: 

#1   +   2x2   =     5 
2rr!   +   4x2   =   10. 



Solution: 

5 
\ 

4.5 
■       *\ 

4 \,                                x1+2*x2=5 
\                           2*x1+4*x2=10 

3.5 V 

3 

2.5 

2 X. 
1.5 

1 

\ 

0.5 

-5                                            0                                             5 

Figure 3. Infinitely Many Solutions 

Solve for xi in the first equation: 

Substitute into the second equation: 

xi = —2^2 + 5. 

2 (-2x2 + 5) + Ax2 = 10 

-4x2 + 10 + Ax2 = 10 

10 = 10.    • 

The last equation is true for any value assigned to x2; the linear system is consistent. 

We can visualize the three types of solutions to systems of linear equations as an 

intersection of hyperplanes. Each linear equation in our system represents a hyperplane. 

In R2 a hyperplane is a line. In R3 a hyperplane is a plane. In i?n we cannot visualize a 

hyperplane, but the concept is similar to that of a plane in Rz and a line in R2. 

A system of linear equations is overdetermined if the number of equations is greater 

than the number of variables. Overdetermined linear systems are usually inconsistent; how- 

ever, it is possible for an overdetermined linear system to be consistent. 

Example 1.12   Consider the overdetermined linear system: 
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xi + 2x2 + xz = 6 
3rci - x2 — xs = 5 
hxi + 3x2 + x3 = 17 

-Axi + 6x2 + 4x3 = 2. 

The general solution for this linear system is: 

xx = l/7s + 16/7 
x2 = -4/7s + 13/7 
x3 = s. 

This overdetermined linear system is consistent because two of the linear equations in the 
system are multiples of the other two equations in the system. 

Similarly, a system of linear equations is underdetermined when the number of 

equations is less than the number of variables. Underdetermined linear systems are usu- 

ally consistent with infinitely many solutions. It is not possible for the underdetermined 

system to have a unique solution, because there will always be a free variable. It is possi- 

ble for an underdetermined system to be inconsistent. 

C. METHODS FOR SOLVING LINEAR SYSTEMS 

Many methods for solving systems of linear equations exist. In this section we will 

study three methods: Method of Substitution, Gaussian Elimination with Back Substitution, 

and Gauss-Jordan Elimination. 

1. Method of Substitution 

Solving a system of linear equations by the method of substitution is the process 

of solving for any one variable in terms of the other variables and substituting into the 

remaining equations. The method of substitution is frequently used when solving relatively 

small systems of linear equations, but this method soon becomes cumbersome as the size 

of the linear system increases. The procedure is basic: 

1. Eliminate variables by defining a variable in terms of other variables in the 
system. 
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2. Substitute into the remaining equations. 

3. Repeat 

Example 1.13   Find the general solution for the following linear equation using substitu- 
tion: 

x + 1y = 5. 
Solution: 

Solve for x in terms of y: 
x = 5 — 2y. 

For every value of y there is a different value for x. Let y be any real number. The general 
solution for the linear equation is x = 5 - 2s , y = s. There are infinitely many solutions 
as y varies through the real numbers. 

Example 1.14   Use substitution to solve the linear system: 

2x + 3y - z — 5 
Ax + % - 6z = 2 
3x   +   6y   -   5z   =   0. 

Solution: 

Solve for z in terms of a; and y in the first equation: 

z = 2x + 3y - 5. 

Substitute for z in the second and third equations: 

2x + 3y — z = 5 
Ax + 8y - 6 (2x + 3y - 5) = 2 

3x + 6y - 5 {2x + 3y-S) = 0. 

This simplifies to: 

2a; + 3y — z = :       5 
-835- 10?/ = -28 

* j 

-725- 9y = -25. 

Solve for y in the second equation.: 

y = 
14 4 

5*- 
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Substitute for y in the third equation: 

This simplifies to: 

2x + 3y- z = 5 

-8x - lOy = -28 

-(T-S- )- 
-25. 

2x + Sy — z = 5 
-8z - lOy = -28 

1 1 

5" 

Solving for x in the third equation we get x = 1. Substituting x = 1 into the second equation 
and solving for y we get y = 2. Substituting x = 1, y = .2 into the first equation we get 
z = 3. There is a unique solution for this system of linear equations: (x, y, z) = (1,2,3). 
This solution simultaneously satisfies each equation in the linear system. 

In the process of solving this system of linear equations we appear to have changed 

the linear equations in the system. The new equations are a result of making valid substi- 

tutions for variables into the old equations. Therefore, the systems of linear equations are 

actually equivalent, yet the new system is easier to solve. In solving systems of linear equa- 

tions we want to try to replace the existing system with an equivalent system which has 

the same solution set, but is easier to solve. We say two linear systems are equivalent if 

they have the same solution set. There are three operations which maintain equivalence for 

linear systems. 

1. Scaling: Multiply an equation in the system by a nonzero real number (scalar). 

2. Equation interchange: Interchange two equations in the system. 

3. Equation replacement: Add a multiple of one equation to another equation 
in the system. 

Applying one, or any combination, of these operations to a system of linear equations will 

result in a new system of linear equations which is equivalent to the original system. 

A matrix is a rectangular array of numbers. We will study the arithmetic of matrices 

in Chapter II. The matrix of coefficients is a matrix consisting of the coefficients of the 
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variables of the linear equations. The augmented matrix for a system of linear equations 

is a shorthand notation with which we can represent the linear system. The augmented 

matrix consists of the matrix of coefficients and the right hand side constants of the linear 

equations. Given the system of linear equations: 

»II^I + «12^2 + • • • + alnxn   =   bi 

a21x1 + a22x2 H h a2nxn   =   b2 

Q>m\X\ + am2x2 + • • • + amnxn   =   b. mi 

the matrix of coefficients is: 

on    a12 

a21    a22 

arnl     am2 

and the augmented matrix is: 

an    a12 
a21      <^22 

. aml     am1 

"     aln 

"      a2n 

aln    bi 
a1n       b2 

a, mn     vm 

Using the augmented matrix to represent a system of linear equations, we must keep track 

of the variables xh the +'s and the ='s. 

- ^ A matrix with m rows and n columns is an m x n matrix; m and n are the dimensions 

of the matrix. 

14 



Example 1.15   Write the augmented matrix for the linear system: 

2x + 3y - z = 5 
Ax + 8y - 6z = 2 
3x   +   6y   -   hz   =   0. 

Solution: 

The augmented matrix for the above system of linear equations is: 

2 3-15 
4   8-62 
3 6-50 

This is a matrix of dimension 3x4, because the matrix has 3 rows and 4 columns. 

Just as we can create an equivalent system of linear equations using scaling, equation 

interchange, and equation replacement, we can produce an equivalent augmented matrix 

using elementary row operations. Elementary row operations are: 

1. Scaling: Multiply all entries in a row of the augmented matrix by a nonzero 
constant (scalar). 

2. Row interchange: Interchange two rows in the augmented matrix. 

3. Row replacement: Add a multiple of one row to another row in the aug- 
mented matrix. 

Elementary row operations can be performed on any matrix, not just the augmented 

matrix. However, we will use the augmented matrix and the elementary row operations to 

solve systems of linear equations. 

2. Gaussian Elimination with Back Substitution 

Gaussian elimination is a process which takes a system of linear equations and turns 

it into a triangular system of linear equations using elementary row operations. The solution 

is then easy to find using back substitution. So, the objective is to replace the system with 

an equivalent system which is easier to solve. Let's start with an example. 

Example 1.16 Find the solution set for the following system of linear equations. We will 
work with the linear system on the left and the augmented matrix of the linear system on 
the right: 
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System of Linear Equations Augmented Matrix 

6^! +   4x2   -     23   = -4 6   4-2-4 
3xi +      X2    -    2x3    — -5 3   1-2-5 
9X! +   6x2   +   3x3   = 6, 9   6      3      6 

Solution: 

Add -— times the first row to the second row. 
Add -£■ times the first row to the third row: 

6x1   +   4x2   -   2x3   =   -4 
-     x2   -     x3   =   -3 

6x3   =    12, 

Solve for x3 in the third row: 
6x3   =   12 
x3   =     2. 

Using back substitution, solve for x2 in the second equation: 

-x2 - x3   =   -3 
-x2-2   =   -3 

x2   =   1. 

Using back substitution, solve for xi in the first equation: • 

6x^ + 4x2 — 2xz   =   —4 
6Xl + 4 (1) - 2 (2)   =   -4 

6a;!   =   -4 
-2 

a?!    = 

6 4 -2 -4 
0 -1 -1 -3 
0 0 6 12 

The solution is (x1} x2, x3) = (-£, 1,2). The solution is unique. 

We stated that Gaussian elimination takes a system of linear equations and turns it 

into an equivalent triangular system of linear equations using elementary row operations. 

The solution is then easy to find using back substitution. Two questions arise: 

1. What should a triangular system of linear equations look like? 

2. How do I make the linear system triangular? 

In order to answer these questions, we must first learn about two special forms for 
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any matrix. These form are: row echelon form and reduced row echelon form. 

a. Row Echelon Form/Reduced Row Echelon Form 

A matrix is in row echelon form if the following three properties apply: 

1. Rows which have zeros in all entries, are at the bottom of the matrix. 

2. In rows which have nonzero entries, the leading nonzero entry (pivot) in the 
upper row is to the left of the leading nonzero entry (pivot) in the lower row. 

3. All entries in a column below the pivot are zeros. 
(Note: Some books will state that the pivot should be a 1; however, we will not 
make that additional requirement for row echelon form.) 

A matrix is in reduced row echelon form if the matrix is in row echelon form and: 

1. In rows which have nonzero entries, the leading nonzero entry (pivot) in the 
row is 1. 

2. Each column containing a pivot has zeros in every position above and below 
the pivot. 

Example 1.17 

Example 1.18 

Row Echelon Form 

2 3 4-7 
0 5-1 3 
0   0      3      2 

Reduced Row Echelon Form 

1 
0 
0 
0 

3   0   0   1 
0   10   9 
0   0   16 ■> 

0   0   0   0 

1 
0 
0 

Row Echelon Form 

-6      5   2-5 
0-2   8-1 
0      0   0      3 

Reduced Row Echelon Form 

4 
5 
4 

17 0 9 0 0 
0 0 1-60 3 
0   0   0      0   1-7 

Any matrix can be changed into row echelon form or reduced row echelon form by 

applying elementary row operations to the matrix using the following algorithm. 

1. Start with the first nonzero column from the left; this is the pivot column. 

2. The top position in the pivot column is the pivotposition. Interchange the top 
row with another row, if necessary, to move a nonzero entry into the pivot position. 
This nonzero entry is the pivot. The row containing the pivot is the pivot row. The 
pivot is underlined in the examples above. 
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3. Use elementary row operations to get zeros in all the positions in the column 
below the pivot position. 

4. Cover the row containing the pivot position. Start with step 1 and repeat the 
process on the remaining rows below. Continue this process until the entire matrix 
is in row echelon form. 

To change the matrix to reduced row echelon form, put the matrix in row echelon 
form using the steps above and add one more step. 

5. Start with the first pivot from the right. If a pivot is not 1, make it 1 by 
dividing each entry in the pivot row by the pivot. Use row replacement to get zeros 
above each pivot. 

Row echelon form of a matrix is not unique. Changing the sequence in which the 

elementary row operations are performed will produce different coefficients. However, the 

systems are still equivalent. On the other hand, reduced row echelon form is unique. 

The terms leading nonzero entry, pivot, and pivot position have been mentioned in 

developing the row echelon and reduced row echelon forms of a matrix. This brings up the 

concept of a pivot variable. What exactly is the pivot variable? Well, just as you would 

suspect, thepivot variable is the variable in the system of linear equations corresponding to 

the pivot position in a row of a matrix. The pivot is underlined in the following examples. 

When we solve a system of linear equations we usually try to solve for the pivot 

variable in terms of the variables to the right in each linear equation. Since we solve for the 

pivot variables in terms of the other variables, we say the pivot variables are the dependent 

variables. The value of the pivot variables depend on the value of the other variables. You 

will also hear the term basic variable used to refer to the pivot variable. 

If a variable is not a pivot variable, it is called &free variable, or an independent 

variable. We assign parameters to the independent variables to get the general solution. 

Each different choice of value for the independent variable determines a different solution 

for the linear system. A solution set can have more than one independent variable 



Example 1.19   Consider the 4 x 5 augmented matrix: 

Augmented Matrix of linear system with 4 equations and 4 variables 

1 2 -1 3 6 
0 -1 -2 1 0 
0 0 -6 -2 -3 
0 0 0 -1 2 

There are four pivot positions which correspond to the four pivot variables,^, x2, x3, and 
rc4, in this augmented matrix. The corresponding linear system has a unique solution (^, =^, |, -2). 

Example 1.20   Consider the 3 x 6 augmented matrix: 

Augmented Matrix of linear system with 3 equations and 5 variables. 

~1 -1 -1 0 0 1 
0 0 0 10 3 
0    0      0    0   11 

There are three pivot positions which correspond to the three pivot variables in the system 
of linear equations. The other two variables are independent variables. The system has the 
general solution: 

X\     =     1+X2+X3 

X2     = X2 

Xz    = xz 

x±   = 3 
x5    = 1. 

In this solution set, x^a^and x5 are the pivot/dependent variables; x2 and x3 are the 
free/independent variables 

The method of solving systems of linear equations by reducing the augmented ma- 

trix to row echelon form is called Gaussian Elimination.   ■ 

Let's do another example. This time we will perform elementary row operations on 

the augmented matrix only. 

Example 1.21   Given the system of linear equations: 

xi + 3x2 - 2x3 

2xx + 6x2 - 4x3 

2a;i + 6x2 - 5x3   -   2xA   +   4x5   +     9x6 

4xx + 12x2 - 9x3   -   2x4   +   8x5   +   21x6 

+   2xb   +     6x6 

+     4X5 
2 
0 
3 
7 
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write the augmented matrix: 

1 3 -2 0 2 6 2 
2 6 -4 0 4 0 0 
2 6 -5 -2 4 9 3 
4 12 -9 -2 8 21 7 

Solution: 

Add -2 times the first row to the second and third rows, 
add -4 times the first row to the fourth row: 

1   3 -2 0 2 6 2 
0   0 0 0 0 -12 -4 
0   0 -1 -2 0 -3 -1 
0   0 -1 -2 0 -3 -1 

Interchange the second and third rows: 

13-2      0   2 
0   0-1-20 
0   0      0      0   0 
0   0-1-20 

6 
-3 

-12 
-3 

2 
-1 
-4 
-1 

to the fourth row: 

13-2      0   2 
0   0-1-20 
0   0      0      0   0 
0   0      0      0   0 

6 
-3 

-12 
0 

2 
-1 
-4 

0 

This is row echelon form. The pivots are underlined. 
Write the corresponding system of linear equations using the new coefficients: 

xi   +   3x2   -   2x3 +   2xb   +     6x6   =      2 
-     x3   -   2x4 -     3x6   =   -1 

-   12x6   =   -4. 

Solve the equations for the pivot variables.  The pivot variables are the variables corre- 
sponding to the pivots of each linear equation: 

xj   =   -3x2 + 2x3 - 2xb - 6x6 + 2 

x3 

x6 

-2x± — 3x6 + 1 
1 
3' 
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Begin at the bottom and back substitute into the equations above: 

x3   =   -2x± - 3x6 + 1 

xz   =   -2xA - 3 Q j + 1 
x3   —   —2x4. 

Substitute rr3 into the first equation: 

x1   =   -3x2 + 2x3 - 2x5 - 6x6 + 2 

xi   =   -3x2 + 2(-2xi)-2x5-6(~] +2 

X\    =    — 3X2 — 4^4 — 2x5 

Assign arbitrary values to the independent variables to get the general solution: 

2i Xl — -3r - 4s 
x2 

= r 
Xz = -2s 
£4 = s 
x5 = t 
x6 = 1 

3" 

The general solution is represented by parametric equations. Each solution to the linear 
system is uniquely determined by the parameters r, s, and t, which are real numbers. The 
pivot variables are xltxz, and x6. The free variables are x2x±, and x5. 

Remember, our objective is to replace the current system of linear equations with an 

equivalent system which is easier to solve. This method of solving systems of linear equa- 

tions by reducing the augmented matrix to row echelon form then using back substitution 

to find the solution set is called Gaussian elimination with back substitution. 

Notice we interchanged rows in one step of the reduction process. This interchange 

was necessary to obtain a nonzero entry in the pivot position. In general, interchanging 

rows may be a necessary operation to obtain a nonzero entry in the pivot position. 

Another method for solving systems of linear equations is Gauss-Jordan elimination. 

3. Gauss-Jordan Elimination 

Gauss-Jordan elimination involves changing the augmented matrix of a linear sys- 

tem to reduced row echelon form. Since reduced row echelon form is a step beyond row 
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echelon form, let's continue with the same example. 

Example 1.22   We began Example 1.21 with the following system of equations: 

xi + 3x2 — 2xz 

2X-L + 6x2 - 4x3 

2x\ + 6x2 — 5xs   — 
Axi + 12rr2 - 9x3   - 

+ 2xb + 6x6 =   2 
+ 4rr5 =0 

2x4   + 4x5 + 9x6 =   3 
2x4   + 8a;5 + 21rr6 =   7 

In Example 1.21, we changed the augmented matrix into row echelon form: 

I 3 -2 0 2 6 2 
0 0 -1 -2 0 -3 -1 
0 0 0 0 0 -12 -4 
0 0 0 0 0 0 0 

We now continue with our algorithm to change the augmented matrix to reduced row ech- 
elon form. 
Multiply the second row by -1, and 
multiply the third row by ~: 

1 3 -2 0 2 0 0 
0 0 1 2 0 3 1 
0 0 0 0 0 1 1 

3 
0 0 0 0 0 0 0 

Add —3 times the third row to the second row: 

1 3 -2 0 2 0 0 
0 0 1 2 0 0 0 
0 0 0 0 0 1 1 

3 
0 0 0 0 0 0 0 

Add 2 times the second row to the first row to produce the reduced row echelon form: 

13 0   4 2 0 0 
0   0 12 0 0 0 
0   0 0   0 0 1 § 
0   0 0   0 0 0 0 

Rewrife the system of linear equations: 

xi   +   3x2 +   4x4   +   2x5 =   0 
xz   +   2x4 =   0 

1 
x6   =   - 

3 
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Solve for the pivot variables: 

Xi =   -3rc2 —   4x4   —   2xb 

xz   —   —2x± 
x6   =         |. 

e independent variables to get the 

r X! = - -3r - 4s - 2t 
x2   = r 

< 
x3    = 
x4    = 

-2s 
s 

X5    = t 
{ x6    = 1 

3- 

Notice that the solution set is represented by parametric equations where the parameters r, 
s, and t are real numbers. 

We have just solved the system of linear equations using Gauss-Jordan elimination. 

This method tends to involve more arithmetic than Gaussian elimination. Most computer 

algorithms perform Gaussian elimination to solve systems of linear equations. 

D. EXISTENCE AND UNIQUENESS OF A SOLUTION 

Now that we can solve systems of linear equations, let's consider how to determine 

whether a solution exists and, if a solution does exit, whether that solution is unique. 

When the augmented matrix for a system of linear equations is in row echelon form 

or reduced row echelon form, there will sometimes be row of the form: 

[0 0...0 b]. 

If b ^ 0 in any of the rows with this form, when we write the linear equation corresponding 

to this row we get: 

Oxi + 0^2 + • • • + 0xn   =   b,    by^O 

0   =   6,    b^O. 

There are no variables x1,x2r..,xn which will make this linear equation true; therefore, the 
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linear system is inconsistent. 

If b = 0 in all of the rows with this form, the rows will result in linear equations: 

0 = 0, 

which is true for any variable x1,x2,...,xn; therefore, the system is consistent. 

This idea is summarized in the following theorem [Ref. 1]: 

Theorem 1.1   A system of linear equations is inconsistent if, and only if, in the (reduced) 
row echelon form, there is a row of the form: 

[0,0...0b], where b^O. 

A system of linear equations is consistent if it is not inconsistent. A consistent linear system 
will have: 

1. A unique solution when every variable is a pivot variable. 

2. Infinitely many solutions when at least one variable is an independent vari- 
able. 

This theorem applies to nonhomogeneous systems of linear equations, which are 

sometimes consistent and sometimes inconsistent. The linear systems with which we have 

been working have been nonhomogeneous systems of linear equations. In the next section 

we will learn about a new type of linear system which is always consistent, the homogeneous 

system of linear equations. Before we study homogeneous linear systems, we'll look at the 

application of linear systems in solving network problems. 

When we want to move some product from one location to another location, we de- 

sign routes along which these products can move. We call these routes networks. Electricity 

moves from power plants to our houses along power line networks. We communicate long 

distances using telephone networks. We travel to different places using traffic networks 

such äs highways, railroads, airline routes, and sea routes. We want products to move along 

networks efficiently, so we plan the movement by modelling the network as a mathematical 

object. Network models consist of points called nodes which are connected by lines called 

arcs. Product movement through a network is called flow. For example, in a traffic network 
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the roads are the arcs and the points of intersection of the roads are the nodes. Cars flow be- 

tween nodes along arcs in directions indicated by arrows.  A set of one-way streets would 

«1 

20 

A 

15 
^—  A 

10 
D 

<i  k  

15 
t 

B C  Sf 

, I t 

Figure 4. One-way street network. After Ref. [1]. 

be modeled as shown in figure 4. The basic idea behind solving a network problem is bal- 

ance of flow. Balance of flow means what flows into a node must equal what flows out of 

a node. In figure 4 we see that 30 cars flow into node A and 30 cars flow out of node A. 

Another network problem could deal with communication lines. Suppose that a 

signal company is establishing communication lines in a tactical area of responsibility. The 

company has received only partial information on the number of lines needed. The in- 

formation received and the lines planned are shown in the network model in figure 5. 

Determine the number of lines which the signal company must establish along the arcs 

x1,x2,x3,x4,x5, and x6. Remember, in a network problem, balance of flow is the goal. 

The number of lines into a node must equal the number of lines out of the node. The equa- 

tions for this communication network are: 

20 + ^2 = 15 + ai (node A) 

20 + £4 = 20 + rc3 (nodeB) 

20 + xi = 25+Xi (nodeC) 

15 + 3:5 = 20 + 22 (nodeD) 
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Figure 5. Communications Network 

25 + xe   =   20+ £5    (nodeE). 

We can rewrite these equations as: 

X\    - -    Xi = b 
x3   - -   £4 = 0 
Xi    - -   £4 = 0 
xi   - -   x6 = -5 
x5    - -   x6 = 5 

The augmented matrix is: 

1 -1 0 0 0 0 5 
0 0 1 -1 0 0 0 
1 0 0 -1 0 0 5 
0 1 0 0 -1 0 -5 
0 0 0 0 1 -1 5 

Interchange row 2 and row 4: 

1 -1 0 0 0 0 5 
0 1 0 0 -1 0 -5 
1 0 0 -1 0 0 5 
0 0 1 -1 0 0 0 
0 0 0 0 1 -1 5 
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Interchange row 3 and row 4: 

Add -1 times row 1 to row 4 

Add -1 times row 2 to row 4 

1 -1 0 0 0 0 5 
0 1 0 0 -1 0 -5 
0 0 1 -1 0 0 0 
1 0 0 -1 0 0 5 
0 0 0 0 1 -1 5 

1 -1 0 0 0 0 5 
0 1 0 0 -1 0 -5 
0 0 1 -1 0 0 0 
0 1 0 -1 0 0 0 
0 0 0 0 1 -1 5 

1 -1 0 0 0 0 5 
0 1 0 0 -1 0 -5 
0 0 1 -1 0 0 0 
0 0 0 -1 1 0 5 
0 0 0 0 1 -1 5 

Multiply row 4 by-1: 

1 -1 0      0      0      0 5 
0 1 0      0-10 -5 
0 0 1-10      0 0 
0 0 0      1-10 -5 
0 

van 

0 

able 

0      0      1-1 

;s we get: 

xi   =   x6 + b 
x<2   =      xe 

x3   =      x6 

Xi   =      xe 

x<o   =   x6 + 5 
x6   =      Xe. 

5 

The signal company needs to assign a fixed number of lines which will enter the network 

on arc x6, after which, the remainder of the lines needed are determined by the equations 

above. 
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E. HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS 

A homogeneous system of linear equations is a system in which all the constant 

terms on the right hand side of the equations are zero: 

auXi + a12x2 H h aXnxn   =   0 

021X1 + a22x2 H h a2nxr, 0 

am\X\ + Om2^2 + • • • + CbmnXn 0. 

Unlike nonhomogeneous systems of linear equations, homogeneous systems of linear equa- 

tions are always consistent. Homogeneous systems have two possible solution sets: 

1. One solution - the trivial solution in which each variable is equal to zero: 

xi = 0,x2 = 0,...,xn = 0. 

2. Infinitely many solutions - nontrivial solutions as well as the trivial solution. 

Let's solve a homogeneous system of linear equations. 

Example 1.23   Given the following augmented matrix and equivalent reduced row echelon 
form of the matrix: 

Au jmentec Matrix Reduced Row Echelon Form 

2 4 -1 0 2 0 " "10  0  0-20" 
2 -3 2 -1 0 0 row equivalent to 0   10   0      §   0 
1 1 2 1 -1 0 0   0   10      0   0 
0 1 0 1 1 0 0   0   0   1    ^0 

Solution: 

Write- the corresponding system of linear equations: 

Xi 

x2 + 
£3 

Xi 

2x5 

\xb 

0 
0 
0 
0. 
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Solve for the pivot/dependent variables: 

The general nontrivial solution is: 

X\ 

X2 
= 

2x5 

=fx5 
x3 

= 0 
X± 2^5- 

Xi 2s 
X2 = -3/2s 
Xz — 0 
X4 = l/2s 
x5 

= s. 

The trivial solution occurs when s — 0. 

An important observation in solving homogeneous systems of linear equations is 

that performing elementary row operations will not change the zeros in the column of right 

hand side constants of the augmented matrix.. 

We have the theorem of existence and uniqueness for solutions to nonhomogeneous 

linear systems. Similarly, we have a theorem which addresses the existence of nontrivial 

solutions to homogeneous linear systems. 

Theorem 1.2   An underdetermined homogeneous system of linear equations has at least 
one independent variable and; therefore, has nontrivial solutions. 

Be careful! The theorem says nothing about a linear system in which the number of 

variables is equal to the number of equations. Below are two distinct examples in which the 

homogeneous linear system has the same number of variables as equations yet for the first 

example there are infinitely many nontrivial solutions and for the second example there is 

only one solution, the trivial solution. 

Example 1.24   Determine if the following homogeneous system of linear equations has a 
nontrivial solution: 

6rr!    +   lÜx2   +   3x3   =   0 
-6x1    -     4x2   -   3z3   =   0 
123i    +     2x2   +   6xz   =   0. 

Solution: 
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Write the augmented matrix: 

6    10      3   0 6      10   3   0 " "6 10   3   0 " 
-6   -4   -3   0 r*~/ 0       6   0   0 r*u 0 6   0   0 
12      2      6   0 0   -18   0   0 0 0   0   0 

Add 1 times row 1 to row 2                  Add 3 times row 2 to row 3               This is row echelon form 
Add -2 times row 1 to row 3 

Here we can see that x3 is free; therefore, there are nontrivial solutions. Continue to reduced 
row echelon form: 

6 10 3 0 
0 6 0 0 
0     0   0   0 

1      3      2     U 

0   10   0 
0   0   0   0 

1  o  I  0 
0   10   0 
0   0   0   0 

This is row echelon form Add j^5 times rQw 2 .      This is reduced row echelon form 
1 3 

Multiply row 1 by ± 

Multiply row 2 by i 

Write the corresponding system of linear equations: 

X\ 

Solve for the pivot variables: 

The general solution is: 

The trivial solution occurs when s = 6. 

+ 2^3     = 0 
X2 = 0 

0   = 0 

Xl     = fxs 
x2    = 0 
xs    = x3. 

Xl     = 2 6 

x2    = 0 
X3     = s. 

Example 1.25   Solve the following homogeneous system of linear equations: 

2x!   +   2x2 =0 
4x!   +   2x2   +   4x3   =   0 
4x1 +   6x3   =   0. 

Solution: 
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Write the augmented matrix: 

2   2 0 0 2 2 0 0 
4   2 4 0 /-NJ 0 -2 4 0 
4   0 6 0 0 -4 6 0 

Add -2 times row 1 to row 2       Add -2 times row 2 to row 3 
Add -2 times row 1 to row 3 

Write the corresponding system of linear equations: 

Solve for the pivot variables: 

The only solution is the trivial solution 

2      2      0 0 
0-2      4 0 
0      0-2 0 

Row echelon form 

&1     +2^2 

-   2x2   +   4x3   = 
-     2X3    -- 

=   0 
=   0 
=   0 

%i   =   -x2 

X2     =      2x3 

x3   =     0. 
solution 

(   X!     =     0 

<    X2     =     0 
1    *3     =     0. 

E COMPUTERS AND SYSTEMS OF LINEAR EQUATIONS 

Geometrically speaking, the solution to a linear system can be interpreted as the 

points of intersection of the linear equations. The problems we will study can be solved by 

hand and sometimes even graphed. In the real world, problems are much more extensive 

and require the use of calculators and computer software. In using automation, we must be 

aware of the probability of error. The errors we are talking about are not human error, but 

rather machine limitations and design. 

Types of error: 

• Machine epsilon - Machine epsilon is the smallest number e such that 1 + e > 1 on 
the machine, e is a measure of the relative error committed in storing numbers on the 
computer. 

• Truncation Error- This error occurs when we approximate a number even though the 
number requires an infinitely long sequence of numbers. 

• Round-Off Error - Digital computers generally use floating-point numbers of fixed word 
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length. The true value of a number is not expressed exactly due to the computer imper- 
fection of round-off error. 

Why are we concerned with error? Consider two lines which are nearly parallel. 

The two equations are not proportional, but are nearly proportional. A small error in the 

coefficient of a variable will result in turning, raising, or lowering a nearly parallel line 

slightly, thereby causing a large change in the point of intersection, relatively speaking. 

So, in the two equations, a small error in the coefficients can result in a large error in the 

solution. A system is said to be ill-conditioned when a small change in a coefficient or 

the right hand side constant results in a large change in the solution. The following is an 

example of an ill-conditioned system. [Ref. 2] 

Example 1.26   Consider two nearly parallel lines, 

1.4142a; -y   =   0 
V2x-y   =   0. 

This system has a unique solution (x,y) = (0,0). If we introduce a small change in the 
right hand side of the second equation we shift the line corresponding to the second equation 
slightly. 

1.4142a -y   =   0 

V2x-y   =   0.001. 

In this case, the y-intercept will change, but the slope remains the same. This system has the 
unique solution (x, y) — (73.7,104.3). So, the system of linear equations is ill-conditioned 
because a small change in a coefficient produced a large change in the solution. 

Example 1.27 Machine computation also results in unexpected errors. Consider the sys- 
tem, 

0.0001x + y   =   1 

x + y   =   2. 

This system has the approximate solution (x, y) = (1.0001,0.9999). Using Gaussian elim- 
ination and rounding to three significant digits, we will get the solution (x,y) = (0,1). 
However, if we interchange the equations before eliminating variables, and still round to 
three significant digits, we will get the solution (x, y) = (1,1). This row interchange is an 
example of partial pivoting. Partial pivoting is a strategy for interchanging rows to obtain 
nonzero entries in the pivot position, which will reduce round-off error. The idea behind 
partial pivoting is that when a number has some error in it resulting from round-off, divid- 
ing that number by a value near zero will increase the error. For this reason, we want the 
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pivot entry to be as far from zero as possible. In order to ensure we minimize error, we 
interchange rows as necessary to place the largest entry in absolute value, in the pivot po- 
sition. Partial pivoting is may be done for other reasons even when it is not necessary to 
obtain the largest pivot entry. This strategy and others are described in numerical analysis 
textbooks. 

EXERCISES 

1. Decide whether the following equations are linear or nonlinear in the vari- 
ables x, y,z. 

a) 2xi + 3xtx3 + x2 = 2 

b) —Xi + 2x2 + x3 = tan(&)        (k is a constant) 

i 

c) 3xi — x2 + 2x3 = 6 

d) Xi + \fhx2 = x3 - 4 

e) —Xi — x2
l + 3 = x3 

f)x2=x3 

g) 2x + 4yz = 6 

h) x - ßy + z - sin t = es    (s,t are constants) 

i) x + 16y - 1z - 4 

j) -3a;3 -3 = 0 

2. Write the coefficient matrix and the augmented matrix for each of the fol- 
lowing systems of linear equations. 

—3rci + 5x2 =  1 

a)   x\   +   2x2   =   —4 
Axi   -     x2   =   -3 

2xj   +   x2   +   3x3 

b)      x2   -     x3   + 3xi 
x\                 +   hx3 -   2x5   = 

1 
-4 
6 

3. Find the solution set for the following linear equations. 
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a) -2x± + 5x2 - x3 + 3x4 = 8 

b) v - 4w + x + 5y + 3z = 0 

c) x — y + 6z = 0 

4. Solve the following linear systems by the method of substitution. 

„\     2x   +     V   =   5 
}  -3x   +   2y   =   3 

4z   -   2y   =   0 
u^    a;   +   3y   =   7 

2a;   -   3y   -     z   =     6 
c)     x   +   6y   -   2z   =   12 

-x   +   4y   +   6z   =   24 

d) 
6:r2 6 

4a;i + x2 -3 

—X\    +      x2 + 3%3 =   3 
e) —2x\   +     x2 + 5x3 = 0 

—3xi   +   2x2 + 8x3 = 3 

—x1   +     x2 + 3x3 = 3 
f) —2x\   + x2 + 5x3 = 0 

—3rci + 2x2 + 8x3 = 4 

5. Solve the following linear systems using Gaussian Elimination. 

2x   -   3y   -     z   = 6 
a) x   +   6y   -   2z   = 12 

-x   +   Ay   +   6z   = 24 

-xi   +     x2   +   3x3 = 3 
b) -2a?i   +     x2   +   5x3 = 0 

-32a    +   2rc2   +   8x3 = 3 

-xi   +     x2   +   3x3 = 3 
c) -2a;i   +     x2   +   5x3 = 0 

-3a?i   +   2a;2   +   8z3 = 4 

d) 

«1 + x3 + 3x4 = 5 
-X! - 2x2 - 3^4 = -9 
2x1 + 2z2 + x3 + 2s4 = 18 
2a>i + z2 + x3 + 5x4 = 12 
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xi   +   x2   +   x3   =        9 
e)  -2x1   -   x2   -   x3   =   -15 

-xi   +   x2   +   xz   =     -4 

f) 

lxi + 2x2 + x3 + Xi = 7 
2^ - 8;r2 + 2x3 + 2% = -10 
2xl + 3x2 + 2x3 + 2xi = 12 
3rE! - 2x2 + 3x2 + 3x2 = 5 

6. Use Gauss-Jordan Elimination to solve the following systems. 

x\ +   2xz   =   5 
a) 2a;a   +   3£2   +   5^3   =   5 

3xi   +   Ax2   +   7x3   =   8 

a?!   +     ^2   +   2x3   =     5 
b) 2»!   +   5z2   +   7x3   =   19 

2xx   +   4x4   +   6x3   =   16 

«i + 2x2   +     x3   =     6 
c) xx   +   2x2   +   2x3   =     7 

2xx   +   4x2   + 2x3   =   15 

-xx   -   2x2   -     x3   =   -5 
d) xx   +   3x2   +   2x3   =      7 

2xx   +   4x2   +   2x3   =    10 

7. A butcher sells regular and diet ground beef. Regular ground beef is 30% 
fat, while diet ground beef is 20% fat. One day the butcher finds that she has on 
hand 3 pounds of fat and 10 pounds of lean beef (assume lean beef has no fat in 
it). The butcher wants to use all the fat and lean beef she has on hand. How many 
pounds of regular ground beef and how many pounds of diet ground beef shall the 
butcher make if she wants to use all the fat and all the lean beef on hand?[Ref 2] 

8. Can the equation ax — b always be solved for xl 

9. Determine if the following systems are consistent? 

a) The 2x4 coefficient matrix for the system has two pivot columns. 

b) The 2 x 4 augmented matrix for the system has the fourth column as a pivot 
column. 
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10. State whether the following matrices are in row echelon form, reduced row 
echelon form or neither. 

a) 

b) 

c) 

d) 

e) 

0 

g) 

1 0 0 -4 
0 1   0 7 
0 0   1 -1 

1 -4 e ;    5 
0 1   5 !   -2 
0 0   1 -3 

1 0   0 " 
0 1   0 
0 0   1 

0 0 " 
0 0 

1 1   0 " 
0 1   0 
0 0   0 

1 1   0 " 
0 0   0 
0 0   1 

2 -3   4 1 
0 4   0 -2 
0 0  c 0 
0 ( )   0 0 

11. Solve the following systems of linear equations by the method you prefer. 

'    2xi   +   6x2   = 
6 
3 

b) 
Xi     —    1X2    =    3 

-Zxi   +   5rr2   =   1 

2a;i    +   5x2 + xz 

c) -x-i   -   3x2 + 2x3 

X\    —   3a;2 — 4x3 

xx   +   4x2 + x3 

d) -xi   +   2x2 + 3s3 

§x2 + 4x3 

4 
5 

-17 

6 
-8 
-1 
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2x2 +     x3 =     3 
e) xi   +   4x2 + 3x3 =  8 

xi   +   6x2 +   4x3 =   11 

2xx - 4x2 +  x3 + 2x4 =  1 
f) -x: + 3x2 + 5x3 -  z4 =  6 

3x1 - 7x2 - 4a;3 + 3x4 = -5 

2x1   +   2x2   =      8 
g) 2a>i   -   5x2   =   -6 

6xi   -   8x2   =      3 

xi   +   2x2   -   3x3   =      0 
h)  -3xa   -   2x2   +     x3   =   -4 

-2a;i -   2x3   =      2 

12. Solve the following homogeneous systems of linear equations. 

2xi    -     x2   +   2x3   =   0 
a)  -xi   +   2x2   +   3x3   =   0 

3x2   +   8x3   =   0 

b) 
Xi    -   2x2   +   4x3   +     x4   =   0 

5xa    +   3x2   +     xz   -   2x4   =   0 

2xa - 4x2 + 2x3 + 4x4 = 0 
-3xi - x2 + 3x3 = 0 

c) - 3x2 - x3 - 2x4 = 0 
xi + x2 + x4 = 0 

-xi - 2x2 - 3x3 + 3x4 = 0 

d) 
xi    -   3x2   +     x3   +   2x4   =   0 

x2   +   2x3+     x4   =   0 

-Xi    +     x2   +   2x3   =   0 
e)     2x!    -   3x2 =0 

-3xx   +   4x2 =   0 
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II.       VECTOR AND MATRIX EQUATIONS 

In this section we will study the notation and algebra of vectors and matrices. Vec- 

tors and matrices give us a way to represent systems of linear equations in a "shorthand" 

notation which is algebraically easier to work with than the linear system itself. We began 

to manipulate linear systems in matrix form when we used the augmented matrix. This sec- 

tion will expand on basic algebraic concepts of vectors and matrices and their applications 

to systems of linear equations. 

A. VECTOR OPERATIONS 

A vector, for our purposes, is an ordered array of n scalars. We denote a vector 

with a lowercase letter which has an arrow over the top, for example, v. We can represent 

a vector as a matrix of dimension n x 1, called a column vector whose components are 

scalars. We can also represent the same vector as a matrix of dimension lxn, called a row 

vector whose components are the same scalars. 

Example TJLl   The vector v written as a column vector and as a row vector: 

v = 

V2 

V = [v1   v2    . 
Row vector 

(lxn) 

Vn J 
Column \fector 

(nxl) 

The components vx, v2, ...vn are scalars. 

]■ 

Given annxl vector v 

v2 

, we associate with {/the point (v1} v2, ...vn) in 

Rn. In our studies we will use column vectors unless otherwise required. 
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Example IL2   Below are three vectors with different numbers of components: 

u = 

UX 

" 3 ' —* 
3" 
6 

U2 

4 ) V = W — 
-2 

ctor in Ä2 

(2x1) \fector in R3 

(3x1) . un _ 
\fector in Rn 

(nxl) 

Two vectors are equal if and only if they have the same components in the same 

order. 

Example IL3   For example, u = v, but u ^ w, and v ^ w: 

u = 
3 3 -6 
4 v = 4 W = 3 

-6 -6 4 
(3x1) (3x1) (3x1) 

We should note that a vector 
3 
4 

-6 
7^ [ 3   4   -6 ] because the vectors have 

different dimensions, even though they have the same components. 

Geometrically, we associate with {/the directed line .segment in Rn with initial point 

at the origin and terminal point at (vi, v2, ...vn). For example, we can associate a vector in 

•R2 with a point in the Cartesian plane. If we draw a directed line segment from the origin 

to the point (vt, v2), we get the conventional visualization of a vector. 

Example DL.4   The point (x, y) in the Cartesian plane can be associated with the vector 
x 
y 

see figure 1. 

1.        Vector Addition and Subtraction 

\fectors can be added and subtracted in the following manner. Given two vectors, if 

the vectors have the same number of components, then addition and subtraction is computed 
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Figure 1. Plot of the \ector [x y] 

component-wi se. 

x — Xi 

X2  _ ,y = 
y\ x + y = xi+yi 

x2 + y2 _ 

X = 
X\ 

X2 
,y = 

. y*. 
x-y = xi-yi 

x2-y2 

If the vectors do not have the same number of components, the sum and difference are 

undefined. 

Graphically, we can use the parallelogram rule to visualize the sum of two vectors. 

In the Cartesian plane, if the origin and the points associated with the vectors are three 

vertices of a parallelogram, the sum of the two vectors is a vector associated the point which 

would be the fourth vertex of the parallelogram, see figure 2. 

Example II.5   Given x = 
r 31 r -l i ' 0 " 

4 
5 

,   y = 2 
fi 

.     z = 
V 
6 
b 

x + y = 
2 
6 

11 
x-y 

4 
2 

-1 

x - z and y + z are undefined. 
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2. 

Figure 2. Illustration of the Parallelogram Rule 

Vector Scalar Multiplication 

Given a vector v = 

V2 

and a scalar k, we can compute kvby multiplying each 

component of iTby the scalar k: 

v2 

" kVi 

kv2 

kv = k 

. Vn . . kvn _ 

When we subtract a vector y from another vector v, we are actually adding (-l)ytov, that 

is, 

v-y = v + (-l)y. 

Graphically, /cCtransforms the vector v as follows. If 0 < k < 1, then k contracts the vector 

v. Jf'O > k > -1,'then k contracts the vector v and points the associated directed line 

segment in the opposite direction. If k > 1, then k dilates the vector v. If jfc < -1, then Jfc 

dilates the vector v and points the associated directed line segment in the opposite direction, 

see figure 3. 
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^^--"Itf. k>1 

^              V 

^^-""HvTlKkO 

^-*^lc?. -1<k<0 

kv.  k<-1 

Figure 3. \ector Scalar Multiplication 

Example n.6   Compute the scalar multiplication fctf: 

Solution:     k = 6, 
0 6-0 0 
6 ,       fci? = 6-6 = 36 
5 6-5 30 

3.        Vector Multiplication 

\ector multiplication is commonly called the dot product or the scalar product. The 

dot product of two vectors requires the vectors to have the same number of components. 

The result will be a scalar, not a vector, ergo the name scalar product. Given two vectors: 

x = 

x2 

xr. 

, and y 

2/2 

Vn J 

we define the dot product as 

x V = ELi xk-yk = xtyt + x2y2 + ■■■ + xnyn. 

-* We know that multiplication of real numbers is commutative, so we can rewrite this 

equation as: 
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x-y   =   x1y1+x2y2 + \-xnyn. 

=   V\X\ + y2x2 -\ h ynxn 
n 

= y-x. 

This demonstrates the property that vector multiplication is commutative, x-y— y-x. 

Example n.7   Consider the vectors: 

x = 

£-y = 2--2 + 3-l + 4-3 = ll. 
y-zis undefined, since the vectors do not have the same number of components. 

The norm, or magnitude, of a vector is defined to be the square root of the dot 

product of the vector with itself. We denote the norm of a vector x by writing \x\. We can 

use the dot product to calculate the norm of a vector, and to calculate the angle between the 

directed line segments associated with two vectors. The norm is defined by: 

r 21 r -21 ' 0 " 

3 ,   y = i ,    z = 
V 
6 
5 4 3 

\x\ v^n X. 

We can calculate the norm of any vector regardless of the dimensions of the vector. 

Example II.8   Given the vectors: 

x = 
' 2 ' 

3 
4 

>   y = 
' -2 " 

1 
3 

,    z = 

' 0 " 
7 
6 
5 

compute \x\, \y\, and \z\ 
Solution: 

x x\   =   V2-2 + 3-3 + 4-4 = V29 fa 5.39, 

\y\   =   V-2- -2 + 1 -1 + 3-3 = VÜ fa 3.74, 
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\z\   =   V0-0 + 7-7 + 6-6 + 5-5 = -s/HÖ « 10.49. 

We can use the dot product and the norm to compute the angle between the two 

directed line segments associated with the vectors x and y using the Law of Cosines, which 

is defined by: 

COS 9 = 
x-y 
x y\ 

9 is the smallest positive angle between the two directed line segments associated with the 

vectors x and y, see figure 4. 

Figure 4. Law of Cosines, Angle Between \ectors 

Example II.9   Given the vectors: 

x = 
' 2 " ' -2 " 

3 
4 

,   y = 1 
3 

find the angle between the associated directed line segments: 
Solution: 

COS0     = 
x-y 
\x\ 

11 
(5.39) (3.74) 

11 
20.16 
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.55. 

6 = arccos(.55) « 56.93°. 

We say two vectors are orthogonal if their dot product is equal to zero. 

Example 11.10   Determine which vectors are orthogonal. 

x 
2 -4 
3 w = 5 
1 7 

u = 
-2 
-1 
2 

x-w = -8 + 15 -7 = 0 (orthogonal), 
£•#=-4-3-2 =-9 (not orthogonal), 
ty.#=8-5 + 14 = 17 (not orthogonal). 

Let's calculate the angle between the directed line segments associated with the or- 

thogonal vectors x and w. 

Example 11.11   Given x = 
2 -4 
3 andw = 5 

-1 7 
, use the law of cosines to calculate 

the angle between the associated directed line segments: 
Solution: 

cos 9 
x • w 
\x\ \w\ 

0 
(3.74) (9.49) 

=   0 

6 = arccos(O) = 90° 
From this example we see that orthogonal vectors form right angles. 

,4.        Vector Form of the Solution to a Linear System 

Now that we know a vector is an ordered array of scalars and the solution to a system 

of linear equations is an ordered set of values, we have a new way to write the solution to a 

system of linear equations. 
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Example 11.12   Given the linear system, 

—2zi — 3x2   —   15x3   = 
6x1 + 2x2   +   I8x3   — 

the general solution is 
' x1 =    -12/73 - 5/7 

x2 =   -27/75-13/7 
xz = s. 

We can also write the general solution in vector form: 

x = 

7 
-8 

Xl -12/75-5/7 " -12/7 -5/7 
x2 = -27/7s - 13/7 = s -27/7 + -13/7 
X3 5 1 0 

B. MATRIX OPERATIONS 

A matrix is a rectangular array of numbers. We denote a matrix with a capital letter 

and the entries of a matrix are denoted with lowercase letters. If we have a matrix A with 

m rows and n columns we say that A is an m x n matrix. An entry in the matrix A is 

represented as aih where % and j denote the position of the entry in the matrix (row i and 

column j). 
an    a12    ai3    .   .    .    a\n 

A 

0,21       0-22      0,23 0*2ri 

arol     aro2     amS     ■     ■     ■     amn 
A is an (mxn) matrix with entries a^- 

Given two matrices A and B, we say the matrix A is equal to the matrix B if, 

and only if, a„ = bi:j for all i, j. In the remainder of this section we will treat matrices 

as algebraic objects and learn how to perform matrix addition, subtraction, multiplication, 

and scalar multiplication. We will learn some properties of matrix operations and discuss 

special types of matrices. 

1. Matrix Addition and Subtraction 

Two matrices can be added together provided they have the same dimensions. Ad- 
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dition is done entry-wise. Given two matrices A and B, both of which are m x n matrices, 

matrix addition is defined as follows: 

C = A + B, where c^ = a^ + bi:j for each i,j. 

C is also anmxn matrix. 

Example II. 13   Compute A + B: 
Solution: 

A 
4   1   6 
-13   2 

(2x3) 

B 
10   2 
3-2   5 

(2x3) 

A + B = 
5   1   8 
2   1   7 

(2x3) 

Similarly, one matrix can be subtracted from another matrix provided they have the 

same dimensions. Subtraction is also done entry-wise. Given two matrices A and B, both 

of which are m x n matrices, matrix subtraction is defined as follows: 

C = A — B, where c^- = a^ — b^ for each i,j. 

C is also an m x n matrix. 

Example 11.14   Compute A — B: 
Solution: 

A = 
4   1   6 
13   2 5 = 

10   2 
3-2   5 

(2x3) (2x3) 

A-B = 
3   1      4 

-4   5   -3 
(2x3) 

If two matrices do not have the same dimensions, matrix addition and matrix sub- 

traction are undefined. 

2. Matrix Scalar Multiplication 

We can multiply anmxn matrix A by a scalar k in the same manner we performed 

vector, scalar multiplication. Given an m x n matrix A and a scalar k, kA is an m x n 

matrix with the entries kai:j for each a»j- in the matrix A. Matrix scalar multiplication can 

be performed on any matrix regardless the dimensions of the matrix. 

Example 11.15   Consider the matrix A and the scalar k: 
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Solution 

A 

kA = 2 

4   1   6 
-13   2 

(2x3) 

4   1   6 
-13   2 

k = 2. 

8   2   12 
-2   6     4 

When we subtract a matrix B from a matrix A, we actually add (-1) B to A. 

A-B = A+{-l)B. 

Remember, A and B must have the same dimensions to perform addition and subtraction. 

3. Matrix Multiplication 

Not only can we multiply a matrix by a scalar, but we can also multiply a matrix by a 

matrix. Unlike matrix addition and subtraction, matrix multiplication is not done entry-wise 

and the dimensions of the matrices may or may not be the same. Matrix multiplication is 

performed by taking the dot product of the row vector in the ith row of the first matrix with 

the column vector in the ;th column of the second matrix to get the ij entry of the resulting 

matrix. Since the dot product of two vectors requires that the vectors have the same number 

of entries, the number of columns in the first matrix must equal the number of rows in the 

second matrix. The resulting matrix will have the same number of rows as the first matrix 

and the same number of columns as the second matrix in the product. Let's take a closer 

look. Let ibeanmxnmatrix and let B be ann x pmatrix, then 

A    B =AB 
(mxn)(nxp)    (mxp) 

The dimensions of the matrices must have the following relationship in order to perform 

matrix multiplication, 

dimensions of AB = (m x n)(n x p) = (m x p). 

dimensions of resulting matrix 
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We define the product as follows: 

C = AB, where the entries of C are ci:j = Y2=i aikhj for each i, j 

Example n.16   Let A 4   1   3 
-13   2 

matrix and B is a (2 x 3) matrix, 

and B 
1      0   2 
3-2   5 Since A is a (2 x 3) 

dimensions of AB = (2 x 3) (2 x 3). 

Since the dimensions of A and B do not have the right relationship for matrix multiplication, 
AB is undefined. 

4   1   3 
-13   2 and£ = Example 11.17   LetA = 

dimensions of Aß =   (2x 3) (3 x 2)   =(2x2). 

6 1 
4 2 
0   5 

dimensions of resulting matrix 

AB   = 
4   1   3 
-13   2 

6 1 
4 2 
0   5 

4-6 + 1-4 + 3-0 
-1-6 + 3-4 + 2-0 

28   21 
6   15 

4-1 + 1-2 + 3-5 
— 1 - 1 + 3-2 + 2-5 

Unlike vector multiplication, matrix multiplication is not a commutative operation. 

So in general, 

AB ^ BA. 

Example 11.18   Let A 

while BA is a (3 x 3) matrix. 

BA   = 

4   1   3 
13   2 andB 

6 1 
4 2 
0   5 

Then AB is a (2 x 2) matrix, 

"6   1" 
4   2 
0   5 

4   1   3 
-13   2 
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6 4+1- -1    6 1 + 1-3 
4 4 + 2- -1    4 1 + 2-3 
0 4 + 5- -1    0 1 + 5-3 

23     9 20" 
14   10 16 
-5   15 10 

6-3 + 1-2 
4-3 + 2-2 
0-3 + 5-2 

4. Properties of Matrix Operations 

Given scalars a and b and matrices A,B, and C, with dimensions such that the 

operations below are defined, the following properties hold: 

1. A + B = B + A       Commutative property of addition. 

2. A + (B + C) = (A + B) + C       Associative property of addition. 

3. A(B + C) = AB + AC       Left distributive property over addition. 

4. (A + B)C = AC + BC       Right distributive property over addition. 

5. A(BC) = (AB)C       Associative property of multiplication. 

6. a(B + C) = aB + aC 

7. (a + b)C = aC + bC 

8. {ab)C = a(bC) 

9. a(BC) = (aB)C       The order of B and C must be maintained. 

5. Partitioned Matrices 

At the beginning of this section we said an m x n matrix A has m rows and n 

columns: 

A 

all       «12 

a.21    aii 

aln 
a2n 

We can think of an m x n matrix as a matrix which consists of n column vectors each with 
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m components: 

A=[c1   c2   •   •   • - cn ] . 

We can also think of an m x n matrix as a matrix which consists of m row vectors, each 

with n components: 

A 

We have changed our view of a matrix from a rectangular array of numbers to an array of 

vectors, either column vectors or row vectors. Can we go one step further and consider 

a matrix to be an array of matrices? It turns out that we can. Anmxn matrix can be 

partitioned into smaller matrices, which we shall call submatrices or blocks, by separating 

the entries in the matrix using horizontal and vertical lines between the rows and columns 

of the matrix. Given a matrix 

A = 
Oil »12 Ö-13 ^14 &15 Ö16 

Ö21 a22 Ö23 a24 ^25 a26 

0-31     0-32    0,33     <^34     ^35    Ö36 

we can rewrite the matrix A as & partitioned matrix consisting of submatrices 

A = «21 

Ol2 

0-22 

0-13 

«23 a24 
015 

0-25 

0-16 

^26 

0131 0-32 0-33 ^34 «-35 0-36 

'^ii   Au   A13 

Ai\   A22   A23 

where An = an   ^12 

0-21     0-22 
M2 

0-13     0-14     0-15 

0-23     0,24     O25 
A 13 

0.16 

0.26 

A2i = [ a.31   a32 ] , A22 = [ a33   a34   a35 ] , and A23 = [a36\. 

The partitioning of A is not unique. We can rewrite the matrix A as a different parti- 

tioned matrix by choosing a different arrangement of the horizontal and vertical lines. When 

we write the matrix A as a matrix consisting of row vectors, 

A 
an 0-12 0-13    0.14 0-15 Ol6 

a.21 0-22 0-23     0.24 0-25 026 

0.31   032   0,33   a34   a35   a36 

n 
r2 

r3 
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we are actually partitioning the matrix A into submatrices 

A = 
An 
An 
A3l 

Similarly, we can partition A into submatrices which are column vectors. 

A=[c1   c2   c3   c4   c5   c6] = [ An   A12   A13   Au   A15   A16 ] 

Example H.19   Let A-    3547 

a) Partition A into a matrix with two submatrices which are row vectors. 

Solution: 

A = 
14   2   6 
3   5   4   7 

An 
A21 

b) Partition A into a matrix with four submatrices which are column vectors. 

Solution: 

A 
1 
3 

4 
5 

2 
4 

6 
7 = [ A„   Au   A13   Au ] 

c) Partition A into a matrix with at least three submatrices/blocks 

Solution: 
' An   A12 

A21   A22 
A = 

14   2   6 
5   4   7 

Not only can we partition matrices, but we can also treat partitioned matrices as 

algebraic objects just as we do matrices which are not partitioned. This is useful when 

we are dealing with large matrices on a computer. Instead of storing the entire matrix in 

the computer memory, we can store the partitions and only call the necessary partition into 

memory to complete a calculation. 

a. Addition and Subtraction of Partitioned Matrices 

Addition and subtraction of partitioned matrices is performed in exactly the same 

way as addition and subtraction of non-partitioned matrices. The submatrices must have 

dimensions such that addition and subtraction are defined. • 
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Example 11.20   Let A 

1 2 5 7 3 2 
2 6 3 

, and B — 5 1 6 
1 i V 6 1 2 
9 0 4 0 9 3 

Let A and B be partitioned as follows: 

1 2 5 
2 6 3 
1 1 7 
9 0 4 

4ll     4i2 
•^•21     ^22 

B 

7 
5 

3   2   " 
1   6 

= 
6 
0 

1   2 
9   3 

Bn   B\i 
B21   -S22 

a) Calculate A + B. 

Solution: 

A + B   = -"4-11     -^-12 , -#11     -ßl2 

•^•21     ^22  _ #21     ^22 

A21 + B21   A21 + B22 

8 
7 

5   7   " 
7   9 

7 
9 

2   9 
9   7 

8 5 
7 7 
7 2 
9 9 

7 
9 
9 
7 

Compare this result with adding A + B when 4 and B are not partitioned. Is the result the 
same? It should be. 

b) Compute A - B. 
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Solution: 

A-B   = An   Al2 

A-n   A22 

An — -B11   A12 

A21 — B21   A22 

Bn   B\2 
B21   B22 

— B12 

— B22 

-6 -1 3 
-3 5 -3 

-5 0 5 
9 -9 1 

1 3 " 
5 -3 
0 5 
9 1 

-6 
-3 
-5 

9 

Compare your solution with A-B when A and B are not partitioned. Is the result the 
same? Again, it should be. 

We see that the sum/difference of two partitioned matrices is equal to the sum/difference 

of the corresponding submatrices. The matrices must have the same dimensions with re- 

spect to the submatrices and the submatrices must have the same dimensions with respect 

to the elements. Using our example, A and B are both 2x2 partitioned matrices each with 

corresponding submatrices which have dimensions: 

Atl and Bu are 2 x 1/ 

A12 and B12 are 2 x 2, 

An and B2\ are 2 x 1, 

A22 and B22 are 2 x 2. 

Scalar Multiplication of Partitioned Matrices 

Multiplying a partitioned^matrix by a scalar is the same as multiplying each subma- 
"" An     Av» 1 ,     . ,       , 

and c is any scalar, then trix by that same scalar. If A = ill     ^-12 

A21   A 22 

cA = cAu   cA12 ' 
cA2\   cA22 
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Example 11.21   Let A = 

Compute cA.' 

Solution: 

cA 

2   3 

5   6 
An   Al2 

A2\   A22 

8     10   12 

cAn   cA12 

cA21   cA22 

2-1 I   2-2   2-3 

2-4 I  2-5   2-6 

2 I     4    6 

and let c = 2. 

c.        Multiplication of Partitioned Matrices 

Let ibeanmxn matrix and let B be an n x r matrix. If the submatrices have 

dimensions such that multiplication is defined, the submatrices can be multiplied exactly as 

we perform matrix multiplication. 

Example EL22   Let A = 
1 1   1 
2 1   2 = [ Ai   A12 ] 

and let B = 

4 
2 
1 

3 
1 

1 
1 
2 #22 

1     2   3 

Compute AB using submatrix multiplication. 

Solution: 

AB   =   [4n   A12] £11 
-B22 

=   [AuBn + Al2B22) 

r4 
-9 11 

111 -i 
2   1   2 2 3 1 + -i 

1 1 2 L
   

j 

[724] [_i -2 -31 
12   1   7 + -1 -2 -3 

[ 1    2   3] 

6 
11 

0   1 
-1   4 
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In the example, we multiply the submatrices of A and B exactly as we perform 

matrix multiplication. 

AB = [ An   A12 
B22 

= [AnBn + A12B22] 

But the multiplication of A and B is only defined if the submatrices have dimensions such 

that the submatrix multiplication is defined. 

The dimensions of AnBn = (2 x 3) (3 x 3) = (2 x 3). 

The dimensions of AX2B22 = (2 x 1) (1 x 3) = (2 x 3). 

Finally, the resulting submatrix products must have dimensions such that addition is defined. 

The dimension of AnBu + A12B22 = (2 x 3) + (2 x 3) = (2 x 3). 

6. Special Matrices 

A square matrix is a matrix in which the number of rows is equal to the number of 

columns. The dimension of a square matrix A is denoted nxn and we say a square matrix 

of dimension nxn has order n. 

A 

All     &12     O13 0,14 

021     ^22     ^23 Ö24 

Ö31     032     Oj33 034 

a41     O42     O43 O44 

(4x4) 

A is a 4 x 4 matrix of order 4. Themain diagonal of A consists of the entries an, a22, a33, 

a44, underlined in the matrix A above. Only square matrices have a main diagonal. 

The transpose of a matrix A, denoted AT, is a matrix where the columns of A are 

the rows of AT and the rows of A are the columns of AT. If A is an m x n matrix, then ylT 

will b§ an n x m matrix. 

Example 11.23   Let A 4   1   3 
-13   2 

(2x3) 

then AT 
4 -1 
1 3 
3      2 

(3x2) 
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Since a vector is also a matrix, it is easy to see that the transpose of a row vector is 

a column vector and the transpose of a column vector is a row vector. 

Example n.24   Consider the column vector x : 

and äF = [ 3   4   5 ] . 

The transpose of a matrix has some interesting properties. 

x = 
3 
4 
5 

1. (AB)T = BTA 

Example 11.25 Let A = 
4   1   3 

-13   2 andB 
6 1 
4 2 
0   5 

then AB = 
28   21 

6   15 as 

previously shown. So, (AB)T 

Solution: 

28     6 
21   15 Let's calculate BTAT. 

T AT BTA 6   4   0 
1   2   5 

(2x3) 

28     6 
21   15 

=   (ABf. 

4 -1 
1 3 
3      2 

(3x2) 

2. (A + B)T = AT + BT. 
(Remember, to add two matrices, they must have the same dimension.) 

Example 11.26 Let A = 4   1   3 
-13   2 

and (A + B)T = 

Solution: 

6 0 
4   8 
7 9 

and£ = 

. Let's calculate AT + BT. 

2   3   4 
1   5   7 then A+B = 6   4   7 

0   8   9 

AT + BT   - 
" 4 -1 " "21" 

1 3 + 3   5 
3 2 4   7 

58 



6 0 
4   8 
7 9 

=   (A + B)T. 

3. (A - B)T = AT - BT. 

4. (AT)T = A. 

5. (cA)T = c(A)T, where c is a scalar. 

Try to make up some simple examples on your own to see how properties 3, 4, and 

5 work.      ' 

Annxn matrix is a symmetric matrix if A = AT. The symmetry is across the main 

diagonal. A symmetric matrix is always a square matrix. 

Example 11.27   Let A 
2 3   4 
3 15 

_4   5   3 
the matrix A is a symmetric matrix. 

and AT 
2 3   4 
3 15 
4 5   3 

Since A — AT, we say 

The zero matrix, denoted 0, is an m x n matrix in which all entries are O's. The 

following are some properties of arithmetic with the zero' matrix. Given matrices which 

have dimensions such that the operations are defined: 

1. A+0 = 0+A = A. 

2. A-A = 0. 

3. 0-A=(-T)A. 

4. 0A = 0. 

5. A0 = 0. 

Example 11.28   The following are examples zero matrices: 

0   0 
0   0 

0 
0 
0 

0   0   0   0 
0   0   0   0 .[o] 

By property l,we can conclude the zero matrix is the additive identity for matrices. 
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Example 11.29   LetA = 
1 2   3 
2 4   6 
3 5   1 

A + 0 

and 0 = 
0 0 0 " 
0 0 0 
0 0 0 

1 2 3 " 
2 4 6 + 
3 5 1 

1 2 3 " 
2 4 6 
3 5 1 

. Then 

0 0 0 
0 0 0 
0 0 0 

=   A. 

The additive inverse of an m x n matrix A is the matrix (-1) A such that A + 

(-1)A = A-A=0. This is property 2. 

C. EXERCISES 

1. Determine the dimensions of the resulting matrix if A is a 2 x 4 matrix, 5 
is a 4 x 6 matrix, and C is a 6 x 2 matrix, 
a) AB 
b)CA 
c)AC 
d)5C 
e)Bi 

" -3 " ' -5 " 
' -1 " 

3 
' -3 " 

0 
2 ,   y = 0 ,     z = 4 ,     t = 1 

-1 -1 -2 
-5 

2 
-4 

2. Letx = 

Using the vectors above calculate the following: 

a) x + y 
b)z + t 
c)y + t 
d) x ■ x 
e)y-t 
f)z-t 
g) Calculate the magnitude of £ 
h) Calculate the angle between x and y. 
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i) Calculate 5t. 

3 Let A = -1   3 " 
2   4 i B = 

' 0 
6 

2 
3 

-1 " 
5 ■> 

C = 
"20" 

0   1 
3   1 

D = 
1   2   3 

-2   1   0 
0   0   0 

,    E = 
' -2   - 

1 
-1 ' 

3 > F = 
' -1   2 

4   1 > 

G = 
"20" 

0   3 

a) Calculate the matrix products AB, BC, BD, CA, CB, DC. 
b) Write AT. 
c) Write CT. 
d) Write BT. 
e) Calculate (EFf. 
f) Calculate FT£;T. 
g) Find the additive inverse for matrix A. 
h) Find the additive inverse for matrix C. 
i) What are the scalars on the main diagonal for matrix F? 
j) What are the scalars on the main diagonal for matrix B? 

4. Consider the matrices: 

A = 

D = 

"-3   0" 
-1   2 

4   1 
,     B = 

3      1 " 
0   -2 ,   c = 

"452 "6      13" 
-3   0   1 ,     E = -15   2 
-12   4 4   - 2   3 

-4   2 
6   5 

Compute the following: 

a) AB 
b)D + E 
c)D-E 
d)DE 
e)ED 
f)-7B 

' g)3C-D 
h) (3F)D 
i) A(BC) 
})(4B)C + 2B 
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5. Let A,B,x, and y be the matrices: 

A = 
-3 -1 

0 2 ,    B = 
2 -1 

2 
0 

-1 
4 

3 ' 
1 ,    x = 

' 1 " 
2 >    f = 

" -1 " 
0 

3 2 

Find each of the following expressions, or state why it does not exist. 

a) AB 
b)Ax 
c)ATy 
d)x-y 

6. Let A, B, C, x, and y be the matrices: 

A = 

x = 

4-2   3 
-1      5   2 

2 
0 
2 

y 

-3 1 
,    B = 0 2 

" -1 " 

-2 -1 

3 
-2 

c -2   1 
-1   3 

Find the following expressions or state why the expression does not exist. 

a) AC 
b) AB + CT 

c)x ■ y 
d)3x + B 

7. True or False (Explain your answer.) 

a) If matrices A and B have dimensions such that AB exists, then BA exists. 
b)If A, B, and Chave dimensions such that addition is defined, then (A + B)+C 
A+(B + C). 
c) If A and B are square matrices, AB = BA. 
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8. Which pairs of vectors are orthogonal? 

x = 
1" ' 2 ' ' -3" r -71 
2 ,   y = 3 ,     z = 5 ,     w = 2 

-1 8 7 1 

9. Let it 

" -1" 2 " " -1 " 
2 
0 ,    w = 3 

5 ,     * = 
-1 

1 
2 -2 0 

For each pair of vectors, either show that they are orthogonal, or compute exactly 
the cosine of the angle between the associated directed line segment. 

10. Let A, B, and C be the partitioned matrices: 

A = 
"3      2   1" 

2-10 ,    B = 
1    2   -2 

-10      3 

Compute 
_   -3    1   2 
*• 

-1    -3   1' 

a) AB 
b)A + l 
c)BC 

3 

C=[2   -1   1 ] 

11. Perform each of the following partitioned matrix multiplications. 
1   -1 

a) 

b) 

c) 

1 
0 

2 
3 

4 
1 

-1 

1 
-1 

2   " 
0 
3 

2   1 
1 2 
2 1 

0   -2 

-1 
0 

2 
1 

3 
-1 

2 
0 

3 
-1 

2 
1 
1 

-1 
0 
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12. A student taking 4 classes will study for the classes as follows: 

Class Days to study class 
I Monday, Wednesday Friday 
II Monday, Tuesday, Thursday 
III Tuesday, Wednesday, Thursday 
IV Monday, Wednesday, Friday 

The student will study a fixed length of time for each class in each session. 

Class Hours Per Study Session 
I 2 hours 
II 3 hours 
III 1 hour 
IV 3 hours 

How many hours will the student study each weekday? How many total hours will 
the student study each week? (Hint: Develop a matrix showing the days the student 
studies for each class by placing a 1 in the matrix if the student studies the class 
on that day and a 0 in the matrix if the student does not study the class on that day. 
Develop a vector showing the hours per session the student studies for each class. 
Complete the matrix vector multiplication to find the hours the student studies each 
day.) 

13. A truck company performs three types of services: delivery of supplies, 
transport of personnel, and maintenance services. The number of trucks required 
of one performance of each service is: 

Service 
Supply Delivery 
Troop Transport 
Maintenance Services 

Number of Trucks Required for One Performance of Service 
3 trucks 
8 trucks 
2 trucks 

The number of times each service is performed each day is: 

Day/Service Supply Troop Maintenance 
Monday :    3 1 1 
Tuesday :    2 2 1 
Wednesday :    3 2 1 
Thursday :    4 1 1 
Friday :    2 3 1 

How many workers are needed each weekday if each service requires 2 workers 
every time the service is performed? 
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14. The division budget officer must make annual budget estimates. The divi- 
sion has 3 brigades, each of which will conduct training exercises. The number of 
exercises each brigade will conduct in a fiscal quarter is: 

Brigade/Fiscal Quarter IstQtr 2ndQtr 3rdQtr 4th Qtr 
1st Brigade 2 1 1 2 
2nd Brigade 1 2 1 1 
3rd Brigade 2 0 1 2 

For each brigade an estimate is given for expenses (in $1,000) incurred in a single 
training exercise for training equipment, fuel, repair parts, and meals. 

Expense ($1,000)/Brigade 1st Brigade 2nd Brigade 3rd Brigade 
Equipment 50 45 60 
Fuel 200 250 200 
Repair Parts 350 400 300 
Meals 50 45 60 

The division budget officer wants to consolidate the estimated annual budget infor- 
mation in a single table showing the total expenses per quarter for each exercise 
expense (equipment, fuel, repair parts, meals) and the total annual cost for each 
exercise expense. Show how the budget officer would make this table? 
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m.       MATRICES AND SYSTEMS OF LINEAR EQUATIONS 

Now that we understand how to perform algebraic operations on matrices, we can 

begin to look at the relationships between systems of linear equations and matrices, and 

apply matrix operations to the linear systems. In this chapter we will discuss two new 

forms for a system of linear equations: the vector equation consisting of several vectors 

and the matrix equation consisting of a combination of matrices and vectors. Using these 

new forms for linear systems, we will then explore the concepts of linear combination, span, 

linear independence, and linear transformation. 

A. MATRIX AND VECTOR EQUATIONS 

Matrix multiplication is directly applicable to systems of linear equations. Given a 

system of linear equations: 

auxx + a12x2 -\ h alnxn   =   6a 

CL21X1 + CL22X2 + ■ ■ ■ + «2rA     =    h 

Q-rnlVl + a>m2X2 + • • • + amnxn    =   bm, 

this system can be written in the matrix equation form: 

Ax = b, 

where A is the matrix of coefficients , x is the vector of variables and b is the vector of 

right-hand side constants. Multiplying Ar we get the result b. Therefore, a system of linear 

equations can be replaced by the matrix equation: 
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Ax 

an    0-12 
Ü2i       Ü22 

am\     am2 

^2n 

" a?i " r&i i 
X2 b2 

. xn . . bm _ 

= b 

If we think of the matrix A as a matrix consisting of a row of column vectors, this system 

of linear equations can also be written in the vector equation form: 

#i<ii + x2a2 -\ h znan = b. 

In the vector equation xt is the ith component of the vector x of variables, where i = 

1,2,..., n. The term a* is the ith column vector of the matrix of coefficients A above, where 

i = 1,2,..., n. 6 is the vector of right hand side constants. Given the matrix equation: 

[ oi   a2 

' xx ' rh i 
X2 b2 

an ] = 

. Xn _ . bm . 

we can obtain the vector equation: 

Xi 

which can be written: 

" an " a12 

021 

+ x2 

&22 

. Ami  . . am2 . 

+ 

aln r6i i 
&2n b2 

*^n = 

. 0.mn _ . bm . 

xxai + x2a2 H \- xnan = b. (IH.2) 

So we can view the linear system in three distinct ways: 

1. a system of linear equations, 

2. a matrix equation, and 

3. a vector equation. 
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This means the system of linear equations has the same solution set as the matrix 

equation, which also has the same solution set as the vector equation. 

Example 3.1   Given the system of linear equations: 

the matrix equation is: 

~2xx   +   3x2   +   Axz   = 
Xi   +   2x2 = 

-   2x2   +     xz   =■ 

-2 
1 
0 

2 
1 

-3 

3   4" Xl 2 " 
2   0 X2 = 1 
2   1 . Xz . -3 

and the vector equation is: 

xx 

' -2 ' 3 " "4" 2 " 
1 
0 

+ x2 2 
-2 

+ x3 0 
1 

— 1 
-3 

B. LINEAR COMBINATIONS OF VECTORS 

Given A; nx 1 vectors vxv2, ■ • •, vk and k scalars a, c2,..., ck, a linear combination 

is a sum of the form 

cxvi + c2v2 H h ckvk = y, 

where the c* are scalars of the vectors tf*. Notice, this is a vector equation. Referring to the 

vector equation form of our system of linear equations {III.2), we see that b is written as a 

linear combination of the column vectors a» with scalars xt. 

Example 3.2   Let u, v, w, zbe vectors in Rn such that: 

4u + 2v = —w + z. 

Express uasa linear combination of v, w, and z. 
Solution: 

—2v — w + z = 4w 

—v- -w + -z = u. 
2        4        4 

u is a linear combination oftf, w, and z with scalars =j-, =±, and J. 

69 



If ü,v,w,z are vectors in Rn, then the span of {u, v, w, z) , denoted Span{«, v, w, z) , 

is the set of all possible linear combinations ofu,v,w,z. We say a vector £ is in Span{u, v, w, z} 

if, and only if, x can be written as a linear combination of the vectors u, v, w, and z: 

X — C-yÜ + C2V + C3W + C4Z. (in.3) 

If the system m.3 is inconsistent, then x is not in Span{{t, v, w, z) . 

It may be easier to understand the span if we can visualize it. If-uis a nonzero vector 

in i?3, then Span{iT} is the set of all multiples of v, a line in R3, see figure 10. Similarly, if 

t 
/ 

y        ^^ 
/              *s^ Kx is Ihc vector beginning 

/             s^          »I the origin, the Spanp} 
'        vf                  Is the entire line. 

/ ' 

Figure 10. Span of a "Vector 

ü and v are nonzero vectors in R3, and v is not a multiple of ü, then Span {u, v} is the set 

of linear combinations of u and v, a plane in R3, see figure 11 

2 " 
1 ,  a,2 = 

3 " 
2 , b = 

0 " 
-1 

-1 -4 5 
Example 3.3   Let ai 

Show that b is in the plane spanned by ax and a2. 

Solution: 

We must show that b can be written as a linear combination of the vectors ax and a2: 

CiÜy + CiQ.2 = b. 
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/               s / 
/                f    / 
/            S      / 
/ u       S         / 

/              r""-^ / x-               / />                 / 

H Ö and v" are vectors, the 

/ 
/ 

Span{G,v} is the plane. 

Figure 11. Span of Two \fectors 

Now solve the linear system for scalars cx and c2: 

c\ 
2 " 3 " 0" 
1 

-1 
+ C2 2 

-4 
— 1 

-5 

Using vector-scalar multiplication, we obtain: 

2cx " 3c2 0 " 
C\ + 2c2 = 1 

. ~Cl . . ~4c2 . -5 

Using vector addition, we obtain: 

2cx   + 3c2 0 
Cl     + 2c2 — 1 

lca     + -4c2 -5 

We know two vectors are equivalent if they have identical components, so we set the com- 
ponents in the left side vector equal to the components in the right side vector: 

2Cl   +      3c2   =       0 
cx   +      2c2   =       1 

-ci   +   -4c2   =   -5. 
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Solve the system of linear equations for c2 and c2: 

\ugir lented matrix 

2 
1 

3 
2 

0 
1 row equivalent to 

2 
0 

3 
1 

0 
2 

1 -4 -5 0 0 0 

The unique solution is cx = 3, c2 = -2. Since the linear system is consistent, & is a 
linear combination of the vectors ax and o2 with scalars a = 3 and c2 = -2, and 6 is in 
Span{ai,o2}. 

C. LINEAR INDEPENDENCE OF VECTORS: 

The vectors u,v,w,z are linearly independent if the only solution to the homoge- 

neous vector equation 

C-yU + C2V + C3W + C4Z = 0, 

is the trivial solution. The vectors u,v,w,z are linearly dependent if they are not linearly 

independent, in other words the vector equation 

Ci u + c2v + c3w + c4f = 0 

has nontrivial solutions. This means at least one cf is nonzero. Some additional guidelines 

to determine linear dependence are : 

1. Given a set of vectors in Rn, if the number of vectors is greater than the 
number of components in the vectors, then the set of vectors is linearly dependent. 
This statement is only intended to be applied to a set of vectors, not a system of 
linear equations. 

2. If the zero vector, 0, is in a given set of vectors, then the set of vectors is 
linearly dependent. 

Example 3.4   The following vectors are linearly dependent: 

1 -3 2 4 
3 > 5 ) -3 -1 
2 7 4 -6 

4 vectors each with only 3 entries 
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Example 3.5   The following vectors are linearly dependent: 

3 0 2 
-1 > 0 ) 5 
-4 0 -3 
The zero vector is a member of this set 

Example 3.6   Determine whether x, y, and z are linearly dependent or linearly indepen- 
dent: 

" 1" ' l" ' 1 " 
1 , y = l . z = 0 
1 0 0 

X 

Solution: 

Start by solving the homogeneous equation: 

cix + c2y + c3z = 0. 

This gives us 

Using vector scalar multiplication we obtafn 

" 1' " 1" " 1" ' °1 1 + c2 1 + c3 0 = 0 
1 0 0 0 

Cl c2 c3 0 
Cl + c2 + 0 — 0 
Cl 0 0 0 

Using vector addition gives us 

Cl + c2 + c3 

ci + c2 + 0 
ci   +     0   +    0 

0 
0 
0 

Setting the entries of the two vectors equal, we get the linear system 

ci   +   c2   +   c3   =    0 
ci    +   c2 =    0 
ci =   0, 

which has only the trivial solution Cl = c2 = c3 = 0. Therefore, the vectors are linearly in- 
dependent. 

Example 3.7   Determine whether the following vectors are linearly dependent or linearly 
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independent: 

Solution: 

Vl = 

1" ' -2 " 4 " 
-1 

2 
, v2 = -4 

2 
, v3 = -13 

17 

Solve the homogeneous system of linear equations: 

1 
1 

-2 
-4 

4 
-13 

0 
0 

row equivalent to 
1 
0 

-2 
-6 

4 
-9 

0 
0 

2 2 17 0 0 0 0 0 

x\ and rr2 are pivot variables and x% is a free variable. Therefore, the linear system has 
nontrivial solutions and the three vectors are linearly dependent. 

The rank of a matrix is the number of linearly independent rows or columns in the 

matrix. We can use what we have learned about linear independence to determine the rank 

of a matrix. To determine the rank of a matrix, use Gaussian elimination to reduce a matrix 

to row echelon form. The nonzero rows are linearly independent. Additionally, the columns 

with pivots are linearly independent. 

1 -2 1 4 -1 1 -2 1 4 -1 
4 -8 -6 4 -2 row equivalent to 0 0 10 12 -2 
1 -2 16 -10 -1 0 0 0 32 -3 
3 -6 18 -2 -3 0 0 0 0 0 

Example 3.8   LetA = 

The rank of A = 3. The first three rows of A are linearly independent, the first, third, anc 
fourth columns (columns with pivots underlined) are linearly independent. Notice, there is 
only one linearly dependent row vector, the fourth row; but, there are two linearly dependent 
column vectors, the second and the fifth columns. 

The number of linearly independent rows is equal to the number of linearly inde- 

pendent columns in a matrix. The same is not necessarily true for linearly dependent rows 

and columns. 

D. LINEAR TRANSFORMATIONS 

In this section we will study vector-valued functions of the form 

T{x)=y, 
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where T takes a vector x in Rn and changes it into a vector y in Äm. We say that: 

T :Rn -> fl" 

is a transformation from Ä" to i?m, with a rule T, which assigns to each independent vector 

variable x in the domain Än, one and only one dependent vector variable y in Rm. T (x) 

is the image of ir under the transformation T. The range of T is the set of all images T (x) 

in Rm. Let's look at an example. 

Example 3.9   Define a transformation T : -R2 -»• Ä2 by the rule T ( 

When £ = 3 
2 

^2 

2xx 

X2 

T{x) = y 
Xi  ' > 1 _ 2xx ' 
X<i X2 

( ' 3 ' '61 
\ 2 

)- 2 
T 

We are concerned with transformations from Rn to Rm which are associated with 

matrices, called matrix transformations. Given anmxn matrix A and a column vector £ in 

Rn, the product Ax is an m x 1 column vector 6 in Rm. We say f in Rn is transformed to 6 in 

Rm by the matrix A. Using matrix notation, we can define the transformation T : Rn -»• Äm 

by the notation: 

T (£) = Ax, where Ax = b. 

We are used to working with the equation Ax = b, so we have been working with matrix 

transformations every time we found a vector x for which the linear system Ax = b was 

consistent.  The next example focuses on the rule, image and range of a transformation. 

[Ref. 4] 

Example 3.10   Let A = 
2 

-1 
3 

"1 4 
" -3 " 

1 

2 4 
2 » w = ,6 = -1 , c = 6 
6 3 5 
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a) Define the rule for the transformation T : R2 —»■ R3 by T (x) = Ax. This gives us: 

T(x)   = Ax 
2 4] r             i 

1 -2 X-i 

3 6 I X2 J 
2xi + 4x2 

-1^! — 2x2 

3a;i + 6rE2 

This is the rule T for the transformation, 

b) Find T (u), the image of Ü under T. 

Solution: 
T{u)   = Aü 

2 4 
-1   -2 
3 6 

-3 
1 

-2 
1 

_ -3 __ 

c) Find x'mR2, whose image under T is 6. In other words, solve the transformation T (x) = 
b, for x. This is a linear system Ax = b, which we can already solve: 

Solution: 

Ax   = --   b • 

2 4 r           ~i 2 
1 -2 Xx 

-1 
3 6 L X2 . 3 

This is the matrix equation for a system of linear equations. We can solve this system by 
reducing the augmented matrix. 

2 
1 

4 
-2 

.2 
-1 row equivalent to 

2 
0 

4 
0 

2 
0 

3 6 3 0 0 0 
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This gives us the solution 

x = 
xx 

X2 

-2x2 + 1 
X2 

d) Is there more than one x whose image under T is S? 

Yes, x2 is jin independent variable. There are infinitely many vectors whose images un- 
der T are b. 

e) Is c in the range of the transformation T ? Recall, the range of T is the set of all images 
under T, so we need to determine if c is the image for some x in R2. Again we will be solv- 
ing a linear system: 

Solution: 

2 
-1 
3 

4 
-2 
6 

Reduce the augmented matrix: 

1   (X =   c 
Ax   =   c 

Xi 

. X2 
= 

"4" 
6 
5 

2 
-1 

4   4" 
-2   6 row equivalent to 

' 2   4 
0   0 

4 " 
8 

3 6   5 0   0 -1 

This system is inconsistent; therefore, c is not an image for any x in R2 and eis not in the 
range of T. 

Example 3.11   Given A = 

formation? 

Solution: 

Since T (x) = Ax, the rule is: 

1 
-2 
3 

1      2 
-2      0 

3   -1 
, if T : R2 -► R3, what is the rule T for the trans- 

2 
0 

-1 

Xi 

X2 

vector in H2 

Rule 

xi   +   2xi 
-2xj 

3a;i   —     x2 
vector in ß3 

We should see a relationship between matrix transformations and our study of the 
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linear system Ax = b. In solving the system of equations Ax = b, we have been finding 

all vectors x in i?n, which are transformed into the vector b in Rm, under the "action" 

of multiplication by A. It turns out that given a transformation T (x) = Ax, this matrix 

transformation T : Rn —»■ Äm is a /wear transformation if: 

1. T(w + w) = T('u) + T(v) for all vectors Ü and t; in the domain of the trans- 
formation T. 

2. T(cu) = cT(u) for all ü and all scalars c 

These two rules state that vector addition and scalar multiplication are preserved 
when a transformation is linear. 

If a transformation satisfies both rules for all Ü and v in the domain of T and all 

scalars c and d, then the transformation must be linear. These rules can be generalized for 

more than two vectors: 

T(ciiTi + c2v2 + ■ ■ ■ + cpvp) = ciT(vi) + c2T(v2) + ■■■ + cpT(vp). 

This is called the superposition principle in engineering and physics. 

Example 3.12   Determine if T (x) = yis a linear transformation when x = 

-     \ 2x1 
V=      x2 

x1 

x2 
and 

Solution: 

A transformation is linear if the following rules hold 

1. T(u + v) = T(u) + T(v) for all vectors u,v in the domain of T. 

2. T(cu) = cT(u) for all vectors ü in the domain of T and all scalars c.Let 

u = 
u2 

and{/ = Vi 

v2 
. Then: 

T(u + v)   =   T 
u2 + v2 
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2 (Wl + vt) 
U2 + V2 

2ux + 2v1 

u2 + v2 

2ux 

u2 
+ 2v1 

V2 

=   T{u)+T(v). 

The first rule holds, but that is not enough. Both rules must hold! Check the second 
rule. Let c be a scalar: 

T{cu) = r( CUj 

V cu2 

2cu\ 
cu2 

\ 2wj ' =   c 
u2 

=   cT(u). 

The second rule holds. Since both rules hold, the transformation is linear. 

Let's think about this a second: in order to show that a transformation is linear, you 

must show that both vector addition and scalar multiplication are preserved. If one of the 

rules fails, you can conclude that the transformation is not linear without checking the other 

rule. Why? Because even if the second rule holds, the first rule already failed. 

Let's look at a few more examples of linear transformations. 

Example 3.13   Given an angle 6 and a matrix A cos 6   — sin 9 
sin 6     cos 6 , the transformation 

T : R2 -> R2, defined by the rule T (x) = Ax, rotates the directed line segment associated 
with the vector x counterclockwise through the angle 9. 

Let 6 = 90° and let x = then: 

cos 90° 
sin 90° 

T (x) = Ax 

sin 90° 
cos 90° 

0 -1 
1 0 
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-1 
1   ■ 

If you plot the directed line segments associated with the vectors x and Ax, you will see 
that Ax is the result of rotating the x counterclockwise by 90°. 

Let 9 = \ and let x 
1 
0 , then: 

T (x) = Ax 
7T *       7T COS 7 — Sm 7 4 4 

sin 7 cos 7 4 4 

^2 

2 

y/2 

1 
0 

1 
0 

v/2 

2 

Again, if you plot the directed line segments associated with the vectors x and Ax, you will 
see that Ax is the result of rotating x counterclockwise through the angle |. 

In the above example the linear transformation rotates a point in i?2 about the origin, 

through the angle 0. This linear transformation is called a rotation. 

Example 3.14   We can define a transformation T : Rn 

1 
where r is a scalar. Let x = and let r = |: 

T (x) = rx 

1 

Rn by the rule T (x) = rx, 

111 
1/2 
1/2 

The resulting directed line segment associated with the vector is shorter than the original 
associated directed line segment. 
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Using the same x, let r — 3: 

T (x) = rx 

' 1 " 
= 3 1 

1 

" 3 " 
= 3 

3 

This time the resulting directed line segment associated with the vector is longer than the 
original associated directed line segment. 

When 0 < \r\ < 1, the transformation T compresses the directed line segment associ- 
ated with the vector x into a shorter directed line segment by a factor of r; this is called a 
contraction. When \r\ > 1, the transformation T stretches the associated directed line seg- 
ment into a longer directed line segment by a factor of r; this is called a dilation. If r < 0, 
the associated directed line segment is also pointed in the opposite direction. Can you re- 
late this transformation to a matrix transformation? What matrix would you use to define 

r   0   0 
the transformation T (x) = Ax and get the same result as T (x) = rx! Try 0 

0 
0 
r 

Letr = 3,^ 

T (x) = Ax 

r   0   0 
— 0   r   0 

0   0   r 
X 

3   ( )   0" " 1 
o : I   0 1 
0   ( )   3 1 

"3 " 
= 3 

3 

This is the same result as the transformation T (x) = rx. If you check to see whether the 
operations of vector addition and scalar multiplication are preserved, you will find that this 
is also a linear transformation. One final example: 

Example 3.15   If we have a line I which passes through the origin, we can define a trans- 
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formation T (x) = Ax which reflects each point in the plane across the line I. This trans- 
formation is called a reflection. 

Let I be the y-axis. The standard matrix for reflection across the y-axis is A 

Let x = 

-1   0 
0   1 

2 
3 then the transformation T : R2 —> R2 is: 

T(x)   =   Ax 
' -1 0 " ' 2 " 

0   1 3 
' -2 " 

3 

If you plot the directed line segment associated with the vectors x and Ax, you will see 
that the new directed line segment is the mirror image of the original directed line segment 
across the y-axis. 

How about a reflection across the a>axis?  The standard matrix for reflection about the 

Using the same vector x, the transformation T : R2 —► R2 is: x-axis is A = 
0 

T(x)   =   Ax 
' 1 0 ' ' 2 " 

0   -1 3 
2 " 

-3 

Plot the associated directed line segments to see the reflection. 
Let's try one more reflection^ Across the line x = y. The standard matrix for re- 

"01" flection about the line x = y is A = 

T:R2-*R2 is: 
1   0 Using the same vector x, the transformation 

T(x)   =   Ax 

Plot the directed line segments to see the reflection across the line x = y 

0 1 
1 0 
3 

2 
3 

E. EXERCISES 
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1. JWrite the following systems of linear equations in matrix equation form 
Ax = b. 

a) 
3a;i   +     x2   -   4x3   =      0 

-2a?i   -   3x2   +   3x3   =   -2 
x1   +   2x2   -     x3   ==      2 

b) 
4x2   -     x3   +   2x±   =   5 

2xx   +     x2   +   3x3 =6 
ixi   -     x2   +   2xz   -   3x4   =   2 

2. Write the matrix equation as a vector equation. 

1 2   1 " si 8 " 
3 -1   4 ^2 — 8 
1 -2   0 . Xs . -6 

3. Write a system of equations which is equivalent to the given vector equation. 

3 " "4" " 1 " 
-1 + x2 1 = 2 

2 5 3 
x1 

4. Write a vector equation which is equivalent to the given system of equations. 

2xi   +     x2   +   3x3   =   6 
xi   +   2x2   -     x3   =   2 

3x2   +     x3   =   4 

5. Write the following system of linear equations as a matrix equation and as a 
vector equation. 

xi + x2 - 2x3 + xA = 1 
-xi - 2x2 + 3x3 - x4 = -1 
2xx   -     x2   +   5x3   -   xA   =      4 

6. Let u, v, w,xbe vectors in Ä4 such that -4 (x - u) = 5 (v- 3w). Express 
x as a linear combination of«, tf, and w. 

7. Determine if b is a linear combination of the columns of the matrix A. 
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a)A = 

b)A = 

2 
-1 
3 

1 
-2 
2 

4 
2 ,     b = 

6 " 
-3 

1 5 

3-2 [ -4 " 
2      6    ,     b=     -3 
8   -3 J L    2 

8. Do^i/ö^^spani?4? 

^i 

1" " -1 " 1 " 
-1 

0 ,     v2 = 
0 
1 ,      Vs = 

0 
0 

0 0 -1 

9. Given £ and A below, is ^ in the plane spanned by the columns of A? 

x 
-5 
-3 
4 

A 
2   -1 
4      5 

-3   -2 

10. Determine if 6 is in the Span-fa^ ä2,a3} 

ax 

2 " " 0 " "  1  " r 31 
-4 ,     a2 = 3 ,       03 = 0 ,    b = -i 

4 3 4 2 

11. This exercise compares a set of vectors with the span of a set of vectors. 

[Ref. 4] Let A = 

ai,a2, and a3 and 

2-13 
—5      3   —1     and 6 = 
6-2      4 

et W =Span{a1; a2, a3}. 

1 
8 
6 

Denote the columns of A by 

a) How many vectors are in {a1; a2, a3}? 
b) Is 6 in {a1} a2,a3}? 
c)Is6inW? 
d) How many vectors are in Wl 
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e) Show that ax is in W. (Hint: row operations are not necessary). 

12. Given x 

a) Is a GSpan(£, y)l 
b)Is6 eSpan(x,y)? 

4" " -l" 5 " 9   1 
0 ,y = 3 ,o = -1 ,6 = -3 

-2 5 2 -9 

13. Let 

A = 

a) Determine the rank of A 

1   2      0 
3 7-5 
4 8      5 

b) Given x 
-1 

8 
-14 

is x in the plane spanned by the columns of Al 

14. Solve the equation Ax = b with A and 6 given below. Write the solution as 
a vector. 

A = 
7 -2 -5 -6 
3 4 1 ,     6 = -14 
0 -6 2 20 

15. Let T (x) = Ax. Define the rule for the transformation. (Compute Ax). 

&)A = 
4 

-1 
2 

2 5 " Xi 

3 8 ,    x = X2 

1 -2 
. Xs . 

b)A 
r -11 

-3 
_, r ,     x = 

2 s 

c)A = 
0   0   1" r 
10   0 ,     x = s 
0   1   0 t 
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16. ForA= 2   0 
0   2 define T : R2 -» R2 by T(f) = Ar. 

Find the images under Tofu = 
2 
3 

andtf 
-1 
-3 

17. Define T(ö?) = Ax, find an a? whose image under T is b. Determine if x is 
unique. 

A = 
3 -5 -1 " " -7 " 
1 2 1 ,     6 = 14 
4 0 2 24 

18. Find all x in i?4 that are mapped into the zero vector by the transformation 
T(x) = Ar where 

"7031 
A=     -5   1-3      3 

6   0      4-2 

19. a) Let A be a 4 x 6 matrix. What values must a and fe have to define a trans- 
formation T : Ra -* Rb by T(x) = 4£. 

b) Let A be a 5 x 3 matrix. What values must a and 6 have to define a transformation 
T : Ra -* Ä6 by T(£) = Ax. 

c) Let A be a 4 x 4 matrix. What values must a and 6 have to define a transformation 
T : Ra -> Ä6 by T(£) = A^. 

7   0      3      1 
20. Let A =     -5   1-3      3 

6   0      4-2 
linear transformation T(x) = Ar? 

and b = 
19 

-10 
12 

Is b in the range of the 
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21. Use a rectangular coordinate system to plot and 
-4 
-1 and their 

images under the transformation T. State what type of linear transformation T is. 

T(x) = 
-0.5 0 

0   -0.5 
Xi 

X2 

22. Use a rectangular coordinate system to plot and 
-4 
-1 and their 

images under the transformation T. State what type of linear transformation T is. 

T(x) = 0 1 
1 0 

xx 

x2 

23. Let ,4 = 
1 
2 

-2 
1 

3 " 
2 

3 " 4" 
,« = -2 

1 
,tT = -1 

-3 
r = 2. 

a) Define T(x) = Ax. 
b) Compute T(u + v) and T(w) + T(u). 
c) Compute T (ru) and rT (w). 
d) Is the transformation defined by T (x) = A:r linear? 

24. Suppose A is an m x n matrix, and its transformation T : Rn -+ Rm is 
defined by T(x) = Ax. Find the rule of the transformation T(x) and give the domain 

"2-2" 
and range of T(x). For example, if A = 

T{x) =Ax = 

-1 
3 

0 
1 

, then the rule is: 

2 -2 1 
1 0 »l __ 

3 1 ^2  _ 

2«! — 2;r2 

3«! + £2 _ 
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and the domain and range are R2 and R3, respectively. 

a) Find the rule, domain and range for A 

2 1 " 
1 3 
1 -1 
0 4 

b) Find the rule, domain and range for A = [ 3   -2   4   1 1 

25. Determine if T is a linear transformation. Give the domain and range of T 
and if T is linear, find A such that T{x) — Ax. 

y 

2x   +   2y 
x   -   2y   +   3z 

26. For both transformations below: 

a) Determine whether or not T is a linear transformation. 
b) Give the domain and range of T. 

c) For both transformations calculate T(x) when x 

d) If T is linear, find A such that T{x) = Ax. 

e) If T is linear, use A to find T(x) when x = 

4 
1 

T 
r        i \ Xi 

Xi 
)- 2x1+x2 

Xo 1 
L     ^2     J 

4 
1 

T 3l 

2=2 
2 

^2 
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IV       MATRIX ALGEBRA 

This chapter begins with the introduction of two new types of matrices, the iden- 

tity matrix and elementary matrices. These matrices are essential in the development of the 

inverse of a matrix and matrix factorization. Next we learn two new methods for solving 

linear systems using inverses and LU decomposition. The chapter finishes with an intro- 

duction to the determinant of a matrix and another method for finding the solution to a linear 

system known as Cramer's rule. 

A. ELEMENTARY MATRICES 

We begin our study of elementary matrices by defining the identity matrix. The 

identity matrix is a square matrix with l's in every position on the main diagonal. All other 

entries are O's. An identity matrix of order n is denoted In. 

The following matrices are examples of identity matrices: 

h = 
1 0 0 
0 1 0 
0   0   1 

1   0 
0   1 

Given an m x n matrix A and an identity matrix of appropriate order, we have 

lmAmy.n — Amxn and Amxnln — Amxn. 

Thus, when we multiply the matrix A on either side by theidentity matrix, the result is the 

matrix A. For this reason, the identity matrix is called the multiplicative identity for the 

matrix A. 

Example 4.1   Let A = 

IA 

1 2 
3 4 
5   6 

Then 

10   0" "12" " 1   2 1 
0   1   0 3   4 = 3   4 
0   0   1 5   6 5   6 

= A, 
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and 

AI = 
"12" 

3   4 
'10' 

0   1 
= 

"12" 
3   4 

5   6 5   6 
A. 

An elementary matrix Ei is a matrix which is formed by performing a single ele- 

mentary row operation on an n x n identity matrix. There are three types of elementary 

matrices, one for each of the three elementary row operations. An example of each type 

follows. 

Example 4.2   Multiply a row by a nonzero constant: 

/ = 

Example 4.3   Interchange two rows 

/ = 

Example 4.4   Add a multiple of one row to another row: 

" 1   0   0 
Multiply row 2 by 

" 1   0   0 " 
3. 

0   10 Ex = 0   3   0 
0   0   1 0   0   1 

wo rows: 

10   0" 
Inte rchange row 1 and i 

"01   0 " 
ow2 

0   1   0 ,         E2 = 1   0   0 
0   0   1 0   0   1 

1 = 
1 0 0 " 
0 1 0 
0 0 1 

Add 4 times row 2 to row 3. 

10   0 
E*=      0   10 

0   4   1 

Theorem 4.1   Let E be them x m elementary matrix formed by performing a single ele- 
mentary row operation eonanmx m identity matrix Im. Then 

E = e(Im). 

Thus, for every mxn matrix A, the elementary row operation e can be performed on A by 
multiplying A on the lefi by the corresponding elementary matrix 

e{A) = EA. 

Add -2 times row 1 to row 2. 

Example 4.5   Let A = 
1   2 3 -1 1   0   0 
2   0 -2 4 and let E = -2   10 
4   1 7 5 0   0   1 

. Then 
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1   0   0 1   2 3 -1 1 2 3 -1 
2   1   0 2   0 -2 4 = 0 -4 -8 6 
0   0   1 4   1 7 5 4 1 7 5 

£M = 

Multiplying the matrix A by the matrix E adds -2 times row 1 of the matrix A to row 2 of 
the matrix A. 

The process of multiplying a matrix by an elementary matrix can be repeated. 

Example 4.6   Let A = 
1 2      3 
2 0-2 
4   1      7 

Add -2 times row 1 to row 2. 

£i = 

We can compute: 

-1 
4 

Add -4 times row 1 to row 3. 

1   0   0 1   0   0 
2   1   0 , and E% = 0   10 
0   0   1 -4   0   1 

EXA 
10   0" 
2   1   0 
0   0   1 

1   2 3 -1 1 2 3 
2   0 -2 4 = 0 -4 -8 
4   1 7 5 4 1 7 

-1 
6 
5 

and 

1   0   0 1 2 3 -1 " 1 2 3 -1 
0   1   0 0 -4 -8 6 = 0 -4 -8 6 
4   0   1 4 1 7 5 0 -7 -5 9 

£2(#iA) = 

Compare the results of multiplying A on the left by Ex and E2 with the results of performing 
the corresponding row operations on A : 

12      3-1 1      2      3   -1 1 ' 1 2 3 -1 
2   0-2      4 r^u 0-4-8      6 r**j 0 -4 -8 6 
4   17      5 4      17      5 0 -7 -5 9 
i.dd -2 times row 1 to row 2. Add -4 times row 1 to row 3. 

A nice feature of elementary row operations is that they can be reversed. 

Example 4.7   Use the same matrices: 

A = 
1 2 
2 0 
4   1 

3 
-2 
7 

-1 
4 
5 

Add -2 times row 1 to row 2. 

and    £?! 
1 0 0 " 
2 1 0 
0 0 1 

Then 
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EXA 
10   0" 
2   1   0 
0   0   1 

1 2      3 
2 0-2 
4   1      7 

-1 
4 
5 

' 1       2 3   -1 " 
= 0   -4 -8      6 

4      1 7      5 

" 1   0   0 " 
v 2. Let E2 = 2   10 

0   0   1 
Reverse the operation by adding 2 times row 1 to row 2. Let Ei = 

E2 (E1A) = 

The result of the multiplication is the original matrix A. 

10   0" 
2   1   0 
0   0   1 

1 2 3 -1 1   2 3 
0 -4 -8 6 = 2   0 -2 
4 1 7 5 4   1 7 

-1 
4 
5 

Then 

A. 

Let's think about what this means for elementary matrices. We can take the iden- 

tity matrix / and change it into an elementary matrix E by performing an elementary row 

operation. Then we can take that elementary matrix E and change it back into the identity 

matrix / by performing the reverse operation on E. The reverse operations are [Ref. 5]: 

Row Operation Reverse Row Operation 
1. Multiply row i by nonzero constant c.    1. Multiply row i by nonzero constant -c. 
2. Interchange row i and row j. 2. Interchange row i and row j. 
3. Add c times row i to row j. 3. Add —c times row i to row j. 

Let ei (/)   =   Ei, an elementary matrix formed by performing a row operation on / 

Lete2(I)   =   Ei,  the elementary matrix formed by performing the corresponding 

reverse row operation on /. 

Then 

E<iE\ = I. 

Since E\ and Ei perform reverse operations, we can also say 

E\Ei = I ■ 

B. INVERSE OF A MATRIX 

In this section we will study the inverse of a matrix and the concept of singular and 
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nonsingular matrices. Additionally, we will learn how to compute the inverse of a matrix. 

We begin with the multiplicative inverse. The multiplicative inverse of an n x n matrix A 

is a matrix B such that 

AB = BA = I. 

If such a matrix B exists, we say that the matrix A is invertible and B is the inverse of A, 

denoted A~x. Then the above equation can be written 

AA-1 = A-1 A = I 

Example 4.8   Let A = 

Solution: 

2 
-1 

AB 

-5 
3 

andß = 

2     -5 
-1     3 

" 3 5 " 
1 2 

r 3 5 
i 2 

" i 0 " 
0 1 

Compute AB and BA. 

AB is the identity matrix. 

BA 3   5 
1   2 

1   0 
0   1 

£A is also the identity matrix. Since AB = I, and BA = /, We say A is invertible and B 
is the inverse of A. We can also say B is invertible and A is the inverse of B. 

Only square matrices will have inverses, but not all square matrices are invertible. 

Example 4.9   Let A = 

Solution: 

"10" 
0   0 andB = h   b2 

b3   bA J ] 

AB = " 1   0 " 
0   0 

b\   b2 

b3   b4 

- 

b\   b2 

0    0 

Now compute AB. 

We will never find a matrix B which is the inverse of A, because no matter which values 
are in the matrix B, the multiplication AB will always result in zeros in the second row. 
There is no way to get a 1 in the second row, second column position (underlined above). 
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The matrix A does not have an inverse. 

Theorem 4.2   If a matrix A is invertible, its inverse is unique. 

How do we know the inverse is unique? Suppose the inverse is not unique. Then 

the matrix A has two distinct inverses B and C. Since B and C are inverses of A, we can 

conclude that AB = BA = I and AC =CA = I. Substituting into the equations below, 

B = BI = B{AC) = {BA)C = IC = C. 

We see from these calculations that B = C. But, we started out saying that B and C were 

distinct inverses of A and came to a contradiction that B = C. All of our calculations are 

accurate; therefore, our assumption that B and C are distinct must be incorrect. Thus the 

matrix A has only one inverse. 

We say the matrix A is nonsingular if the multiplicative inverse of A exists. If 

no multiplicative inverse of A exists, then A is singular. In our previous examples, the 
2 

-1 
-5 
3 , and 

3   5 
1   2 are nonsingular matrices and the matrix matrices 

singular. 

Three useful facts about invertible matrices are: 

1. If A is a nonsingular matrix, then A'1 is also a nonsingular matrix: 

1   0 
0   0 is 

-n-1 
(A-) A. 

2. If A and ßarenxn matrices which are both invertible, then the product 
AB is also invertible: 

{AB)'1 = B~xA-\ 
We can generalize this fact. The product ofknxn invertible matrices is invertible: 

(A1A2...Ak)-'=A-k'A-k\..,A?A-,\ 

3. If A is an invertible matrix, then AT is also invertible and 

(■4T"=(-nr. . 

By now you are probably asking: How do we know if a matrix has an inverse and 

how do we find the inverse of a matrix? There are simple formulas for the inverse of 1 x 1 
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and 2 x 2 matrices. Given a 1 x 1 matrix A = [a], then 

A-1 = [I La 

For a 2 x 2 matrix, the formula is more involved. Let A 

the matrix A is nonsingular and 

a   b 
c   d 

A l 
ad—be 

d   -b 
—c      a 

.Jf ad-be j^O, then 

(IV4) 

If ad-bc = 0, clearly we cannot find a solution for A~x and the matrix A is singular/not 

invertible. Let's look at our invertible matrices above. 

Example 4.10   Given the matrix A 2   -5 
-1      3 and using the formula in equation IV4, 

ad - be = (2 • 3) - (-5 • -1) 

= 6-5 

= 1. 

Since this value is nonzero, we know the matrix A is invertible and 

A^ = 
1 

ad — be 
d -b ' 

—c a 

1 " 3 5 1 
1 1 2 

3 5 " 
1 2 

This is the inverse of the matrix A Similarly, we could start with the matrix A'1, apply the 
formula in equation IV4 and the result would be the matrix A Try this yourself' 

What if our matrix is larger than a 2 x 2 matrix? We'll start with an example and 

follow the example with an explanation. 

Example 4.11   Let A = 
4 -2 6 1   0   0 
2 0 -4 and/ = 0   1   0 
2 0 2 0   0   1 

ination to reduce the matrix A to the matrix I. Simultaneously perform the same row oper 

Use Gauss-Jordan elim- 
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ations on / as we perform on A: 

A = 

Add -y times row 1 to row2 and row 3: 

4 -2 6 1   0   0 
2 0 -4 B = 0   1   0 
2 0 2 0   0   1 

Ax = 

Add —1 times row 2 to row 3: 

A,= 

4 -2 6 " 
0 1 -7 
0 1 -1 

Bi = 
1 0 0 " 

1/2 1 0 
1/2 0 1 

4 -2 6 
0 1 -7 
0 0 6 

B,= 
1 0   0 " 

1/2 1   0 
0 -1  1 

Multiply row 3 by | 

A, 

l. 

4 -2 6 
0 1 -7 
0 0 1 

53 

1 0       0 
-1/2 1       0 

0   -1/6   1/6 

Add 7 times row 3 to row 2 and add -6 times row 3 to row 1: 

4 -2   0 " 
0 1   0 
0 0   1 

B,= 
1 1    -1 

1/2   -1/6   7/6 
0   -1/6   1/6 

Add 2 times row 2 to row 1 

A5 = 
"4   0 0 " 

0   1 0 
0   0 1 

B5 = 

Multiply row 1 by j l. 

A = 
" 1 0 0 " 

0 1 0 
0 0 1 

B« 

0      2/3   8/6 
-1/2   -1/6   7/6 

0   -1/6   1/6 

0 •   1/6   2/6 
-1/2   -1/6   7/6 

0   -1/6   1/6 

What does all of this mean? Using elementary matrices, we say A is row equivalent 
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to In if there exists a sequence of row operations, Ex,E2,...En, such that 

EnEn-i ■ ■ ■ EXA = In. 

Since the product of invertible matrices is invertible, we can multiply both sides of the 

equation by the inverse of the product: 

(KK-i ■ ■ ■ Exy\EnEn^ ■ ■ ■ Et)A = (EnEn^ ■ ■ ■ Exy
lIn. 

This gives us 

InA={EnEn_1-.-Ely
1In, 

which is simply 

A={EnEn-1---E1)~
1. 

This means that A is the inverse of the matrix £„£„_, • • • E1} in other words, A is an 

invertible matrix. Therefore, 

A-1 =  [(EnEn-! ■ • ■ Eft-1]-1 , 

which simplifies to 

A'1 = {EnEn_x ■ ■ ■ E1). 

Thus 

*nj A'1 - (£„£„_! • • • Ex)In 

and we see that the matrix A"1 is the result of performing the same row operations on In 

as we performed on the matrix A when we transformed A to Jn. This is the idea behind the 

next theorem. 

Theorem 4.3 An n x n matrix A is nonsingular if and only if A can be reduced to the 
identity matrix In with a sequence of row operations. The sequence of elementary row 
operations which reduces the matrix A to the matrix In also transforms the identity matrix 
In into A'1, the inverse of A 

The next example refers back to example 4.11, 

Example 4.12   When we perform elementary row operations on A = 
4-2 6 
2 0-4 
2      0      2 
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to show that A is row equivalent to / = 

same row operations on / = 

1 0 0 
0 1 0 
0   0   1 

B« = 
0      1/6   2/6 

-1/2   -1/6   7/6 
0   -1/6   1/6 

, we simultaneously perform the 

and show that / is row equivalent to the matrix 

. By Theorem 4.3, B6 must be the inverse of A. We can 

1 0 0 
0 1 0 
0   0   1 

check to see if I6 = A 1 by computing AB6 = B6 A = I. If the equality holds, then we 
have found A-1. 

Solution: 

AB6 = 
4 
2 
2 

2      6 " 
0   -4 
0      2 

0 
-1/2   - 

0   - 

1/6   2/6 " 
-1/6   7/6 
-1/6   1/6 

" 1   0   0 " 
= 0   1   0 

0   0   1 

Now try: 

B«A = 
0      1/6   2/6 

-1/2   -1/6   7/6 
0   -1/6   1/6 

" 4 -2      6 " 
2      0-4 
2      0      2 

"10   0" 
= 0   1   0 

0   0   1 

It works! We have successfully found A 1. 

Using Theorem 4.3, we can develop a procedure for finding A"1. 

1. Place A and I side by side to form an augmented matrix 

[AI] 

2. Perform row operations on the augmented matrix [A I]. If A can be reduced 
to /, then [A I] is row equivalent to [I A'1] and we can read A'1 off of the aug- 
mented matrix. Otherwise, A does not have an inverse and we say A is singular. 

Here is another example. 
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Example 4.13   LetA = 

Solution: 

1 -1 
0 2 
3   -5 

0 
-1 
2 

Find A' 

[AI} = 

Add —3 times row 1 to row 3: 

1 -1 
0 2 
3   -5 

0 
-1 
2 

0 0 
1 0 

0   0   1 

1 -1 
0 2 
0   -2 

0 
-1 
2 

Multiply row 2 by ^: 
1   -1 0 
0      1   -1/2 
0-2 2 

1   0   0 
0   1   0 

-3   0   1 

1       0   0 
0   1/2   0 

-3       0   1 
Add 1 times row 2 to row 1 and add 2 times row 2 to row 3 

1 0 -1/2 
0 1 -1/2 
0   0 1 

Add \ times row 3 to row 1 and row 2. 

1   1/2   0 
0   1/2   0 

-3       11 

1   0   0 1/2   1   1/2 
0   1   0 -3/2   1   1/2 
0   0   1 -3   1       1 

We have transformed A into /; therefore, our theorem tells us that we have transformed / 
1/2   1    1/2 

into A"1. Read A'1 off of the matrix, A'1 -3/2   1    1/2 
-3   1       1 

to transform A into /, then we would conclude that A is singular. 

If it were not possible 

Computing the inverse of a matrix is an algebraically expensive operation which 

can lose accuracy quickly when using a computer program. However, inverses have theo- 

retical importance which will be useful in future courses. For our purposes, when we have 

relatively small matrices, we can use the inverse to solve the matrix equation Ax = b. If A 

is an invertible matrix, the unique solution x to the equation Ax = b can found as follows: 

Ax   =   b 
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(A-xA)x   =   (A-1)!) 

Ix   =   A~lb 

x   =   A^b. 

Solving linear systems is almost always easier and faster using Gaussian elimination rather 

than computing an inverse. 

Example 4.14   Solve the system of linear equations using the inverse. 

Sxi   +   Sx2   =   18 
lrci   +   3x2   =     7 

Solution: 

Write the matrix equation Ax = b: 

Find A -l. 

"38" 
1   3 

x1 

x2 

= " 18 ' 
7 

A~l = 
ad — be 

1 
9-8 

= 1 

d -b 
-c a 

3 -8 
-1 3 

3 -8 " 
-1 3 

3 -8 " 
-1 3 

Solve the equation x — A 16: 

x = 

-2 
3 

3 
-1 

-8 
3 

18 
7 

a unique solution. 

LU DECOMPOSITION 

In this section we introduce another special type of matrix, the triangular matrix. 
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We will then learn how to solve the matrix equation Ax = b by factoring the matrix A into 

two triangular matrices. 

An upper triangular matrix is an n x n matrix in which all entries below the main 

diagonal are O's. The entries above and on the main diagonal may or may not be O's. 

A = 

an ai2 013 au 
0 «22 023 ^24 

0 0 a33 a34 

0 0 0 a44 

is an upper triangular matrix. 

It is easy to show that the product of two upper triangular matrices is also an upper triangular 

matrix, as suggested by the following example. 

Example 4.15   Let A = 

-2436 
0 12 5 
0 0 7 0 
0   0   0   0 

andß = 

-10 4 
0   3 6 
0   0 2 
0   0 0 

-2 
-5 

7 
5 

Then 

AB = 

2 12 22 35 
0 3 10 34 
0 0 14 49 
0 0 0 0 

Similarly, a lower triangular matrix is an n x n matrix in which all entries above 

the main diagonal are O's. The entries below and on the main diagonal may or may not be 

O's. 

A = 

an      0      0      0 
0>21    Ö-22 0 0 
a3i   o32   a33      0 

L  a41     «42     O43     O44 

The product of two lower triangular matrices is also lower triangular. 

is a lower triangular matrix. 

Example 4.16   A = 
2   0   0 
1   2   0 

-3   4   3 
andß 

4 0 0 
1 3 0 
6   4   2 

Then AB = 
8     0   0 
6     6   0 

10   24   6 

A diagonal matrix isannxn matrix in which all entries above and below the main 

diagonal are zeros. A diagonal matrix is both upper and lower triangular. 

A = 
an 0 0 

0 a22 0 
0      0   a33 

is a diagonal matrix. 
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Example 4.17   The following are diagonal matrices: 

10   0" 
0   3   0 
0   0   1 

3 

"10" 
0   2 J 

0 0 0 " 
0 2 0 
0 0 0 

A unit triangular matrix is an n x n triangular matrix with only l's on the main 

diagonal. 

Example 4.18   The following are unit triangular matrices: 

10   0" 
6   10 ; 
1   4   1 

10 0 
0 1 0 
0   0   1 

Let's look at an example of a new way to solve a system of linear equations using 

triangular matrices. 

1 4 6 8" 
0 1 3 5 
0 .0 1 0 
0 0 0 1 

Example 4.19   Let A = 
2 
6 

-4 

-1     5 
-2   19 
6     4 

different triangular matrices 

Then A can be written as the product of two 

10   0" 
3   1   0 
2   4   1 

Let 6 = 
-2 

1 
30 

A=LU = 

We can solve the equation, 

2 -1 5 " 
0 1 4 
0 0 -2 

Ax = b, 

using the factorization 
A= LU. 

We first substitute the factorization A = LU in Ax = b to get the new equation: 

LUx = b. 

If we let y = Ux, then LUx = b becomes 

Ly = b. 
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2/i -2 
2/2 = 1 
2/3 30 

This gives us 
^10   0 

3   1   0 
_ -2   4   1 __ 

Write the corresponding linear equations" T 
stitution: 

2/i =   -2 
%i   +2/2 1 

-22/1   +   %2   +   y3   =    30 
Substituting in yx = -2 into the second equation, we get 

len the solutions can be found by forwardsub- 

-6 + 2/2   = 1 

2/2   =   7. 

Now substitute into the third equation 

4 + 28 + y3   =   30 
2/3   =   -2. 

The solution to the equation Ly = bisy = 
" -2 ' 

7 . Now us< 
-2 

Ux = y. 

This gives us 

Write the corresponding li 
substitution: 

"2-1      5 " 
0      1      4 
0      0-2 

near equations. 

X2 

'hen t le so 

' -2 
7 

_ -2 
ution; 

2a?i   -   x2   +      5xz   =   -2 
x2   +      4a;3   =      7 

-2a '3     = =   -2 

Now use y to solve the equation 

utions can be found by backward 

This will yield the solution x = 3 
1 

. This is the solution to the matrix equation Ax = b. 

The example above uses matrix factorization of the matrix A. Matrix factorization 

is the process of decomposing a matrix A into a product of two or more matrices. We use 

matrix factorization to express a matrix in a form which is easier to use. A common factor- 

ization process used is LUDecomposition (Lower/Upper triangular matrix decomposition). 

An m x n matrix A has an LU factorization if it can be written in the form A = LU where 
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L is an m x m lower triangular matrix and U is an m x n "modified" upper triangular ma- 

trix in the sense that all entries in U below the diagonal entries un, u22, •-., unn are zeros , 

even when U is not square. The format of the matrices is: 

A = 

1 0 0 0 " 
* 1 0 0 
* * 1 0 
* * * 1 

0 * * * * 
0 0 * * * 
0   0   0   0* 

When we factor A into LU we can solve the equation Ax = b more rapidly. Given: 

Ax = b, 

we substitute A = LU, obtaining 

LUx = b. 

Let y — Ux and solve the pair of equations, 

Ly   =   b 

Ux   =   y. 

We solve Ly = b using forward substitution and then plug the solution y into the equation 

Ux = y and solve for x using back substitution. This pair of equations is easy to solve be- 

cause L and U are triangular and we can almost read the solution off of the matrix. Why 

would we want to solve a linear system using LU decomposition when we have already 

stated that Gaussian elimination is frequently the quickest and least computationally ex- 

pensive method for solving linear systems? It turns out that solving a system of equations 

Ax = b once by either method, takes approximately the same amount of work. In both 

methods we use Gaussian elimination to reduce the matrix A to row echelon form, then we 

solve for the variables using substitution. What happens if we decide we want to solve a 

system of equations using the same matrix A but a different vector 5? This is a realistic 

possibility in real world problems and we should keep in mind that most real world prob- 

lems will involve a matrix A that is significantly larger that those with which we have been 

working. It is not unreasonable to have a matrix A which is 100 x 100 in size. So, if we 

keep Ax and change b, using Gaussian elimination, we have to start at the beginning by re- 
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during the augmented matrix to row echelon form and then solve for fusing substitution. 

However, if we used LU decomposition we have already formed L and U, and do not have 

to use Gaussian elimination to reduce the matrix A to the matrix U again. All we have to do 

is solve Ly = b using forward substitution and then Ux = y using backward substitution; 

much less work! 

Unfortunately, L and U will not always be given to us, so we need to learn how to 

find the LU factorization of a matrix A. Here is the procedure for a general LU decompo- 

sition 

1. Use Gaussian Elimination to reduce the matrix A to the row echelon form 
U. 

2. Construct L so that the same sequence of row operations which reduced A 
to U will reduce L to /. 

Let's look at this a little closer. We want to transform the matrix A to the upper 

triangular matrix U using a sequence of elementary row operations Ei,E2,...En. 

EnEn.1...E1A = U.     ' (IV5) 

Then we can obtain the equation, 

A = LU 

by multiplying on both sides by (EnEn^1...E1)~
1: 

(EnEn.1...E.1)~
1 (K£n-i-..£i) A = (^K-i-^i)"1 U, 

which simplifies to: 

A=(EnEn.1...E1)~
1U. 

If we let (£n£n_i...£i)-1 = L, we get 

A = LU. 

Step 2 in the procedure is to construct L so that the same sequence of row operations which 
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reduced A to U will reduce L to /. Let's see if this works on L: 

(£n#n-i...£i) L = (EnEn.1...E1) {EnEn^...Eyy* = I. 

We have formed L as we said we would. This process is rather involved, but gives an idea 

of what is happening in theory. Just as we said that Gaussian elimination will not produce 

a unique triangular reduction of the matrix A, this procedure will not produce a unique LU 

factorization of the matrix A. If we want a unique LU Decomposition, we have to place 

additional requirements on the process. In this text we will focus on LU decomposition of 

square matrices where L is unit lower triangular and U is upper triangular. We will consider 

only those matrices A which can be factored using row replacement operations. This LU 

decomposition, if it exists, is unique. 

1   2      1 
Example 4.20   Find the LU factorization of the matrix A =        2   3-1 

-11      2 j 

Since the matrix A is 3 x 3, the matrices L and U will also be 3 x 3. We begin with A 
and a shell of a unit lower triangular matrix for L. Let m^- be the multiplier of the pivot 
which will be added to row i to make the entry atj a zero. Reduce A to U using Gaussian 
elimination. Record —ra^- in position l^ of L. 

A = 
1   2 1 " "10   0 
2   3 -1 L = 1   0 

-1   1 2 1 

Add —2 times row 1 to row 2. ra2i = — 2. 
Add 1 times row 1 to row 3. mz\ = 1. 

Ai = 

1     2 
0   -1 
0    3 

1 
L = 

Add 3 times row 2 to row 3. m32 = 3. 

U = 
1 2 1 
0 -1 -3 
0 0 -6 

L = 

-1 

1 
2 

-1 

1 0   0 
2 1   0 

1 

0 0 
1 0 

-3   1 

This completes the factorization of A into L and U. We can check our work by multiplying 
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LU to see if the result is A. This gives us: 

LU 
1 0   0 1 2 1 1   2 1 
2 1   0 0 -1 -3 = 2   3 -1 
1 -3   1 0 0 -6 -1   1 2 

= A. 

It works! 

The procedure employed in the previous example can be summarized as follows: 

1. Form U by reducing the matrix A to upper triangular form using row replace- 
ment (add a multiple of one row to another row) only. Do not use row interchanges 
or scaling. 

2. Form L by starting with a unit lower triangular matrix shell and fill in the 
blank spaces by storing the negative of the multiplier of the pivot in the correspond- 
ing row in L. 

3. Check your solution by multiplying LU to make sure the result is A. 

An LU decomposition will not always exist. However, if the matrix A can be re- 

duced to row echelon form without using row interchanges, an LU decomposition will 

exist. 

If row interchanges are performed on a nonsingular matrix, then the product of L 

and U wil be a matrix which is a row permutation of A. For some permutation matrix P 

we have: 

PA = LU. 

A note about computers. Most computer programs will compute the LU decompo- 

sition where L is unit lower triangular. Instead of storing two new matrices L and U, the 

computer will overwrite the matrix A with the matrices L and U storing only the multipliers 

of L in the lower portion of U instead of storing all of L. 

Example 4.21   Let A 
1 2 
2 3 

-1   1 

1 
-1 
2 

The LU decomposition for A is 
1 0   0 " 
2 1   0 
1 -3   1 

1 2 1 
0 -1 -3 
0 0 -6 

The computer 
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will replace the matrix A with the matrix 

1 2 1 
2 -1 -3 

-1 -3 -6 

D. DETERMINANTS 

Now we are going to study determinants. The determinant is a number assigned to 

a square matrix which may be used to characterize the matrix in some way for example, 

singular or nonsingular. Calculating the determinant of a matrix is another concept which 

has more theoretical application than computational value when a matrix is larger than 4x4 

in size. First, we will learn how to compute the determinant. Then we will use the determi- 

nant to solve the linear system Ax = b. Common notations for the determinant of a matrix 

A are 

det(A), or \A\. 

If the matrix is 1 x 1 or 2 x 2 in size, the determinant can be calculated with little effort. 

Example 4.22   Let A = [3], and let B = 12   7 
3    1 . Find det (A) and det(B). 

Solution: 
det(A) = 3. 

det(B)   =   12-1-7-3 
=   12-21 

=   -9. 

When a matrix A is 1 x 1, the determinant is equal to the value of the single element 

in the matrix. 

If A = [an], then det (A) = an. 

When a matrix A is 2 x 2, the determinant is calculated by a simple formula. 

JfA = 
a   b 
c   d , then det (A) = ad — be. 
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We used this formula when we were computing the inverse of a 2 x 2 matrix. Recall, we 

said if ad - be ^ 0, then the 2 x 2 matrix is invertible/nonsingular. Now we know if the 

determinant of a 2 x 2 matrix is not equal to zero, then the matrix is nonsingular, and if the 

determinant of a 2 x 2 matrix is equal to zero, then the matrix is singular. We summarize 

this statement in the following theorem relating determinants to inverses of matrices.. 

Theorem 4.4   Annxn matrix is invertible if and only if its determinant is nonzero. 

We need a way to compute the determinant of a matrix which is larger than 2x2. 

We will use cofactor expansion. 

1. Cofactor Expansion 

Cofactor expansion is a method for computing the determinant of a matrix. In order 

to calculate the determinant of matrices larger than 2 x 2 in size, we must first understand 

the concept of a submatrix. A submatrix of a matrix A is a matrix formed as the result of 

deleting certain rows and/or columns from the matrix A 

Example 4.23   Let A = 

1      3   ^5   -3 
=1  z^>      8      4 

4      2   ^5   -7 
_ -2   -4      7      5j 

ing row 2 and column 3 (underlined above) frorn the matrix A 

. The submatrix A23 is formed by delet- 

A-a = 
1 
4 

-2 

3   -3 
2   -7 

-4      5 

In general, given the matrix A, the submatrix A; is formed by deleting row i and 

column j from the original matrix A Using submatrices, we can develop a recursive defi- 

nition of the determinant. Recursive means we calculate any later term in a formula from 

the terms that precede it. Let's look at an example. 

Example 4.24   Let A 

Solution: 

12 5 
3 4-2 
2   -3      1 

Find \A\. 
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\A\ = 1. 4   -2 
-3      1 

detof2x2 
submatrix 

= 1 (-2)+ -2 (7)+ 5 (-17) 
= -101. 

We found the determinant of the matrix A, a 3 x 3 matrix, using the determinants of three 
2x2 submatrices. 

In general, we can find the determinant of an n x n matrix using the determinants of n 

submatrices of dimension (n - l)x(n - 1) whenevern > 2. Thus, we find the determinant 

of a 4 x 4 matrix by first finding the determinants of three 3x3 submatrices, and we find 

the determinants for each of the 3x3 submatrices by first finding the determinants of the 

two corresponding 2x2 submatrices. The formula we used in the example is 

det (A) = au det An — a12 det A12 + a13 det Ai3- 

Notice the alternating signs. This formula can be generalized as 

3 

det (A) = \    (-1)1+J aij det Aij 
3=1 

which means 

£ (-l)1+i    aXj    det Ay. 
3=1 alternating sign        |       det of submatrix 

row 1 colj sum over 
colsj of A 

where AXj is the submatrix obtained by deleting row 1 and column j from A. The term 

(-1)1+J det AXj is called the lj cofactor of A. Our definition of the determinant for an 

n x n matrix is: 
n 

det(A) = J2(-±)1+JaijdetAlj, 
3=1 

whichJis called the cofactor expansion along the first row of A. We can generalize even 

further using the term (-1)*+J det Ay which is the ij cofactor of A. Then we can compute 

the determinant of an n x n matrix A using the cofactor expansion along any row or column 

of A. Hence, the determinant can be defined as the cofactor expansion along the ith row of 
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A: 

det(A)^Y^(-l)i+jaijdetAj, 
J'=I 

where row i is fixed and we sum along the columns of A. 

Example 4.25   Let A 
1      2      5 
3      4-2 

_ 2   -3      1 
Compute \A\ using cofactor expansion along the 2nd row of A, 

, the same matrix as in our previous example. 

Solution: 

We write the general formula with i = 2: 

det(^) = ^(-l)2^a2idetA2j, 

which gives us 

det(A) = (-l)2+1-3- 2   5 
-3   1 + (-l)2+2-4- 1 5 

2 1 

detof2x2                                            detof2x2 
submatrix submatrix 

+ (_1)^._2. 

det (A) = (-1) (3) (17) + (1) (4) (-9) + (-1) (-2) (-7) 
det(A) = -101. 

This is the same solution we got when we computed the determinant using the cofactor 
expansion along the 1st row of A. 

Similarly, the determinant can be defined as the cofactor expansion along the jth 

column of A: 
n 

det(A) = Y,(-Vi+JaijdetAj ■y> 

i=l 
where column j is fixed and we sum along the rows of A. 

Example 4.26   Let A 
1      2      5 
3      4-2 
2-3      1 

expansion along the 2nd column of A. 

, the same matrix. Compute |.4| using cofactor 

Solution: 
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We write the general formula with j = 2: 

det(A) = ^(-l)i+2ai2detA2, 
t=i 

which gives us: 

det(A) = (-l)1+2-2- 
3   -2 
2      1 

detof2x2 

+ (-1)2+2 • 4- 
1 5- 
2 1 

detof2x2 
submatrix submatrix 

3+2 
+ (-1) 

det (A) = (-1) (2) (7) + (1) (4) (-9) + (-1) (-3) (-17) 
det (A) = -101. 

This is the same solution. Good! 

If the matrix A has a row or column which consists mostly of zeros, then choose 

the row/column which consists mostly of zeros as the row/column along which to expand. 

This will reduce the number of computations needed to calculate det (A) since, if aiö = 0, 

then the associated term in the cofactor expansion will also be zero. 

Example 4.27   Let A = 
-2      5      2 
4   -2   -1 
0      3      0 

the 3rd row of A (because this row has two zeros). 

Compute \A\ using cofactor expansion along 

Solution: 

We write the general formula with i = 3: 

det(A) = J2(-lf+JasjdetA3j, 
3=1 

which gives us: 

det (A) = (-1)3+1 • 0 • det (A31) + (-1)3+2 • 3 • det (A32) + (-1)3+3 • 0 • det (A33) 

The first and third terms drop out leaving us with: 

det (A) = (-1) (3) -2      2 
4   -1 

= (-1) (3) (-6) 
= 18. 
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This example illustrates the next theorem. 

Theorem 4.5   If an nx n matrix A has a row or column of all zeros, then det (A) = 0. 

Let's try another example. 

2 3 
0 -1 
0 0 
0      0 

-2 
1 

-3 
0 

3 
-4 
-1 
-2 

and let B 

2 
3 

-1 
5 

0 
-1 
-2 

1 

0   0 
0   0 

-3   0 
4   5 

Example 4.28   Let A = 

Find \A\ and \B\. 

Solution: 

To find det(A), use cofactor expansion along the first column since the first column consists 
mostly of zeros. Fix j = 1: 

det(A) = ^(-l)i+1aildetAil 

This gives us the equation: 

det(A) = (-l)1+1(2) 
1 1 -4 
0 -3 -1 
0      0-2 

All other terms drop out because the elements a2i, a31, and a41 are zeros. Continue by 
finding the determinant of the 3 x 3 submatrix using cofactor expansion along the first 
column because the first column consists mostly of zeros. Fix j = 1. We now have 

det(^)=[(-l)1+1(2)](-l)1+1(-l) -3   -1 
0   -2 

All other terms drop out because the elements a21 and a31 of the 3x3 submatrix are zeros. 
Continue by finding the determinant of the 2 x 2 submatrix using the formula ad - be, 
obtaining 

det (A) = [(-1)1+1 (2)] [(-1)1+1 (-1)] [(-3) (-2) - (-1) (0)]. 

Simplifying, we get 
det (A) = (2) (-1) (-3) (-2) = -12. 

Notice that the matrix A is upper triangular and the determinant turned out to be the product 
of the entries on the main diagonal. 

(2) (-1) (-3) (-2) = -12 
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To find det(B), use cofactor expansion along the first row since the first row consists mostly 
of zeros. Fixz = 1: 

det (B) = J2 (-l)1+i aij det Ay 
3=1 

" -1     0    0 
(-1)1+1 (2) -2   -3   0 

1      4    5 

All other terms drop out because the elements a12,ai3, and au are zeros. Continue by 
finding the determinant of the 3x3 submatrix using cofactor expansion along the first row 
because the first row consists mostly of zeros. Fix i = l. Then 

det (B) = [(-1)1+1 (2)] (-1)1+1 (-1) -3   0 
4     5 

All other terms drop out because the elements a12 and a13 of the 3x3 submatrix are zeros. 
Continue by finding the determinant of the 2 x 2 submatrix using the formula ad - be, 
obtaining 

det (B) = [(-1)1+1 (2)] [(-1)1+1 (-1)] [(-3) (5) - (0) (4)]. 

Simplifying, we get 
det (B) = (2) (-1) (-3) (4) = 30. 

The matrix B is lower triangular and the determinant turned out to be the product of the 
entries on the main diagonal: 

(2) (-1) (-3) (5) = 30. ' 

From the above example, we can see a nice feature of triangular matrices. 

Theorem 4.6   If the matrix A is an n x n triangular matrix, the det (A) is equal to the 
product of the entries on the main diagonal. 

It would appear that given annxn matrix A, the determinant is easier to compute 

if we can transform the matrix A to a triangular matrix. Clearly, annxn matrix A is row 

equivalent to an upper triangular matrix which is obtained using Gaussian elimination. The 

question is, how do elementary row operations affect the determinant? When elementary 

row operations are performed on an n x n matrix A, the determinant of the new matrix will 

change in the following ways each time a row operation is performed: 

Effect of row operations on the determinant of a matrix. 
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1. If a multiple of one row of the matrix A is added to another row to produce 
the matrix Ax, the determinant of the new matrix is the same as the determinant of 
the original matrix. 

det Ai = det A. 

2. If two rows of the matrix A are interchanged to produce the matrix A1) the 
determinant of the new matrix is equal to minus the determinant of the original 
matrix. 

det Ax = - det A. 

3. If one row of the matrix A is multiplied by a scalar c to produce the matrix 
Ax, the determinant of the new matrix is equal to c times the determinant of the 
original matrix. 

det Ax = (c) det A. 

Example 4.29   LetA = 
1   3      0 

-2   4   -1 
0   5      0 

Compute \A\. 

Solution: 

Use Gaussian elimination to change the matrix A to row echelon form. 

A = 

Add 2 times row 1 to row 2. The determinant is unchanged. 

1   3 0 
-2   4 -1 

0   5 0 

1     5 0 
0   10 -1 
0     5 0 

Add ~Y times row 2 to row 3. The determinant is unchanged. 

1 5 0 " 
0 10 -1 
0 0 -1/2 

This matrix is upper triangular. By Theorem 4.6, the determinant is equal to the product 
of the entries on the main diagonal. The determinant is unchanged by the row operations 
applied. 

det (A) = det (U) = (1) (10) Q) = 5. 
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Example 4.30   Let A 
1      3     -2 

-2   -6    5 
-17      0 

. Compute \A\. 

Solution: 

Use Gaussian elimination to change the matrix A to row echelon form. 

A = 
1      3    -2 

-2   -6    5 
-17     0 

Add 2 times row 1 to row 2. The determinant is unchanged. 

1    3 -2 " 
0    0 1 
-1   7 0 

Add 1 times row 1 to row 3. The determinant is unchanged. 

-2 1 3 
0 0 
0   10 

1 

Interchange rows 2 and 3. The determinant of the new matrix is equal to (-1) times the 
determinant of the previous matrix. 

1 3 -2 " 
0 10 -2 
0 0 1 

This is an upper triangular matrix. The determinant is equal to the product of the entries on 
the main diagonal. The determinant has changed. 

det(U) = -ldeb(A). 

Remember, we are trying to solve \A\; therefore, 

det (A) = -1 det (U) = (-1) (1) (10) (1) = -10 

Suppose, instead of calculating the determinant at this point, we had taken one more step 
by multiplying the second row by the scalar i. The determinant of the new matrix is equal 
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to JQ times the determinant of the previous matrix. 

1   3 -2 
0   1 -1/5 
0   0 1 

This is upper triangular. The determinant is equal to the product of the entries on the main 
diagonal. The determinant has changed in two ways, once by interchanging rows and a 
second way by multiplying a row by a scalar. 

det([/) = (-l)(l)det(A). 

Again, stay focused, we are trying to find \A\; therefore, 

det (A) = -10 det (U) = (-10) (1) (1) (1) = -10. 

Whew! The same answer. 

Sometimes the determinant will be easier to compute using a combination of both 

elementary row operations and cofactor expansion. 

Example 4.31   Let A 

Solution: 

3 2 1 -2 
0 4 6 8 
0 2 3 5 
3 -2 3 5 

Compute \A\ 

Begin by adding 1 times row 1 to row 4. The determinant is unchanged by the row operation. 

3 2 1 -2" 
0 4 6 8 
0 2 3 5 
0 0 4 3 

Use cofactor expansion along the first column because this column consists mostly of zeros 
and all but one term drops out of the summation. Fix j = 1, 

l+i (-ir1 (3) 
4 6 8 
2 3 5 
0   4   3 

Compute the determinant of the 3x3 submatrix using elementary row operations. Add ^ 
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times row 1 to row 2. The determinant is unchanged. 

(-1)1+1 (3) 
4 6 8 
0 0 1 
0   4   3 

At this point we have two options. We can interchange rows 2 and 3, or we can use cofac- 
tor expansion along the first column of the 3x3 submatri'x. We'll interchange rows here. 
Try cofactor expansion on your own to see if you get the same solution. 

Interchange row 2 with row 3. The determinant of the new matrix is equal to minus the 
determinant of the previous matrix. 

(-ir+1(3) 
4 6 8 
0 4 3 
0   0   1 

This submatrix is upper triangular, so the determinant is equal to the product of the entries 
on the main diagonal. The determinant has changed because of the row interchange. 

det (U) = - det (A). 

We want the determinant of the matrix A. 

det (A) = - det (U) = (-1) (1)1+1 (3) (4) (4) (1) = -48. 

At this point we are ready to learn a few properties of determinants and how they 

relate to some of the concepts presented earlier in the book. 

Properties of Determinants 

1. The rows or columns of the matrix A are linearly dependent if and only if 
det (A) = 0 . (Recall, rows or columns of a matrix are linearly dependent when 2 
or more rows or columns are the same, multiples of another row or column, or have 
a row of zeros.) 

2. The rows or columns of the matrix A are linearly independent if and only if 
det (A) ± 0. 

3. The determinant of the transpose of a matrix A is equal to the determinant 
of the matrix A. 

det (AT) = det (A). 

118 



This is consistent with calculating the determinant using cofactor expansion along 
a row or a column of A, because column operations on the matrix A are simply row 
operations on the matrix AT. 

4. Given nx n matrices A and B, 

det (AB) = det (A) det (B). 

Notice, when we have A = LU, then: 

det (A) = det (LU) = det (L) det (U). 

Since L is unit lower triangular, det (L) = 1, which gives us: 

det (A) = det (U) 

provided the only elementary row operation applied was row replacement. 

5. If A is a nonsingular matrix, the determinant of the inverse to the matrix A 
is equal to the inverse of the determinant of the matrix A. 

det (A-1) = [det (A)}'1 

We can use the determinant to find the solution to a system of linear equations by 

applying Cramer's Rule. 

2. Cramer's Rule 

Cramer 's rule is a formula which allows us to solve the system of equations Ax = b 

using what we just learned about determinants instead of using Gaussian elimination or LU 

decomposition. We discuss Cramer's rule because it will occasionally appear in science texts 

and is sometimes useful in theoretical calculations. However, the formula quickly becomes 

inefficient with matrices of size larger than 3x3. We should remember that Gaussian 

elimination is generally the fastest method for solving systems of equations. 

Before we define Cramer's rule, we need to learn about a different type of matrix. 

Given any n x n matrix A and an n x 1 column vector 6, we can form a new matrix Aj(b) 

by replacing the jth column of the matrix A with the vector 6. 
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1   3 5 " 
-2   2 -1 

3   4 0 
Example 4.32   Let A = 

Form the matrices Ai(b), A2(b), and Az(b). 

Solution: 

and b 
6 
3 

18 

A,{b) = 
6   3 
3   2 

18   4 

5 
-1 

0 

A2(b) = 
1     6 

-2     3 
3   19 

5 
-1 

0 

Az(b) = 
1   3 

-2   2 
6 
3 

3   4   18 

We can use the determinants of the matrix A and the new matrices Aj(b) to solve a 

system of linear equation. 

Example 4.33   Given the linear system of equations 

xi     -   2x2   +    xz    =   3 
2xx    +   2x2   -    xz    =  '6 , 
-^!   +   2x2   +   3x3   =   5 

find the solution vector x using the determinants of the matrices A and A; (6). 

Solution: 

We can rewrite this system of equations as the matrix equation Ax — b: 

1 -2 1 X\ 3 
2 2 -1 x2 = 6 
1 2 3 x3 5 

Now compute the determinants of A, A^b), A2 (b), and A3 (b): 

A = 

Mb) = 
3 
6 
5 

.1   -2      1 
2      2-1 
-12      3 

-2 1 
2 -1 
2      3 

| A| = 1 (8) + 2 (5) + 1 (6) = 24, 

Ai(S)  =3 (8)+ 2 (23)+ 1(2) = 72, 
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1   3      1 
A2(b)=        2   6-1 

-15      3 
[1-23 

A3(b) =        2      2   6 
_ -1      2   5 

We can now solve for x as follows: 

A2(b)  = 1 (23) - 3 (5) + 1 (16) = 24, 

A3(b)  = 1 (-2) + 2 (16) + 3 (6) = 48. 

_ det[Ax(b)}      72 
1 det(A)    "24"   ' 

_ det[A2(6)] _ 24 _ 
2 det(A) 24        •' 

_ det[A3(b)}      48 _ 
3 det(A) 24 

Hence, the solution vector is x 
3 
1 
2 

This is a unique solution. 

The method used to solve the system in the above example, called Cramer's rule, is 

generalized in the following theorem: 

Theorem 4.7   Cramerr$ Rule 
If A is annxn nonsingular matrix and bis annxl vector then the linear system Ax = b 
has the unique solution x, where the entries ofx are: 

Xj — 
det[Aj(b)} 

J = l,2...,n. 
det(A)   ' 

We need to be careful not to read anything into the theorem.. If det(A) = 0, then 

the matrix A is singular and Cramer's rule does not tell us whether there are infinitely many 

solutions or no solutions. 

E. EXERCISES 

1. Compute the inverses of the following matrices. 

A 
2   -1 

-5      3 B = 
4   2 

-3   1 C 4   0 
0   2 
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2. Which of the following are elementary matrices? 

A = 
-2   0 
0   1 B 1   0 

5   1 

D = 
1 0 0 " 
0 0 1 
0 1 0 

E = 

C = -1   0 
0   2 

10   0" 
0   1   0 ,     F = 
1   0   0 

1 0 0 0 " 
0 1 0 0 
0 0 1 0 
0 1 0 1 

3. Consider the matrix A 2   4 
0   1 

a) Find the elementary matrices Ex and E2 such that E2EXA = /. 

b) Write A-1 as a product of two elementary matrices. 

c) Write A as a product of two elementary matrices. 

4. Solve the following linear system using the solution formula x = A^b 

x1 + 2x2 + x3 =3 
2x1 + 3x2 + 4x3 = 4 
4#i   +   5x2   +   9xs   =   5 

5. Find the inverse of the following matrices, if it exists. 

a)A = 

b)B = 

c)C = 

7-8      5 
-4      5   -3 
1   -1      1 

1 2      1 
4   7      2 
2 1   -3 

-7 5 
3 -2 
3   -2 

3 
-2 
-1 
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d)D = 
1 0 3 " 

-2 1 -9 
4 -1 16 

e)E = 
1 3 -1 " 
0 1 2 

-1 0 8 

6. Solve the equation Ax = b by using the LU factorization given for A. 

A = 
1 

-1 
3 

0 0 
1 0 

-2   1 

3 -5 
0 4 
0      0 

2 " 
2 ,  6 = 

-1 " 
7 

1 -16 

A = 

7. Solve the 
1 0   0 
4   1   0 
2 3   1 

; equation Ax = 6 by using the LU factorization given for A. 
2 1 4 3 1 
0 3 -2 , b = 11 
0 0 -1 1 

8. Find the LU factorization of the following matrices. 

a) 

b) 

c) 

d) 

-2  4 
-4 10 
2  2 

3 
3 

-11 

5-1   3" 
15  1   8 

-20 12 -16 

7 -2 
28 -7 
-7  4 
7 ■ 1 

4 -3 
21 -10 
5 9 

21  -5 

2 -1 
12 -1 
8 11 

6 " 
39 
29 

sion. 
9. Compute the determinant of the following matrices using cofactor expan- 

123 



A 
4 -1   2 2 1   1 1   0 2 1 
0 2   3 ,    B = -1 2   1 ,   c = 2   1 -3 -2 
5 2   1 1 -1   2 -3   1 2 3 

A = 

10. Find the determinant for the following matrices using Gaussian elimination. 
"    1      13-5" 
-2-14        3 

4      3   2   -11 
-3      0   1-1 

1   2 
1 7 
2 4 

-3 
-4 
-5 

B 

11. Combine the methods of Gaussian elimination and cofactor expansion to 
compute the determinant. 

A = 

4 10 -6 -2 
3 0 1 -3 
4 0 2 5 
2 5 0 -1 

12. Use determinants to decide if the following vectors are linearly dependent. 

a) 

b) 

c) 

1 4 3 
2 > 6 ? 2 
3 -2 1 

1 " " 2 " " -1 " 
1 > 1 3 1 
1 _j 0 2 

2 " 4" 8 
2 > -6 ) -7 
2 2 1 

.a) 

13. Use Cramer's rule to compute the solution for the following linear systems. 

5xx   +   6x2   =   —9 
2aa    +   4rc2   =   -2 
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x1 + x2 + 2x3   = 1 
b) xi + 2x2 — x3    = -2 

2xx + 6x2 + 2x3   = 10 

hx\ + 2x2 %xz   = 10 
c) 4xi + 2x2 — 6x3 = 1 

3a;i — x2 — 4xz   = 7 

(d) ll\ 
— 5x2 = 1 
+ 2x2 = 11 

e) 4Xl eJ 5a;i 

+ 6x2 
— 2 

+ 7x2 = 3 
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V       EIGENVALUES AND EIGENVECTORS 

Eigenvalues and eigenvectors are used in the study of discrete and continuous dy- 

namical systems, differential equations, and many more areas of pure and applied math- 

ematics. In Chapter IV we studied linear transformations. We looked at the effect that a 

matrix A might have on a vector x. We said the linear transformation is the action of the 

matrix A on the vector x. The study of eigenvalues and eigenvectors involves a linear trans- 

formation A (x) in which the matrix A transforms a nonzero vector x into a scalar multiple 

A of itself 

A (x) = Xx. 

A. REAL EIGENVECTORS AND EIGENVALUES 

Let A be an n x n matrix which is a linear transformation from Rn —> Rn. Is there a 

nonzero vector x and a scalar A for which Ax = Xx! If such a vector and scalar exi st, then we 

call A an eigenvalue of A and x an eigenvector of A associated with the eigenvalue A. The 

matrix A may have several eigenvalues associated with it. Each eigenvalue has infinitely 

many associated eigenvectors. So, we are looking for vectors which are transformed by the 

matrix A into scalar multiples of themselves. 

mple 5.1   Let A = 

x and y eigenvectors 

5   4 
2   3 

5 of A? 

) x = 
-4 
-2 > y = 

" 7' 
3 

Ax = 
"54" 

2   3 
" -4 " 
-2 = 

-28 " 
-14 = 7 

" -4 " 
-2 

  

The vector x is transformed by the matrix A into a vector 7x. Therefore, x is an eigenvec- 
tor of A associated with the eigenvalue A = 7. 

Ay 5   4 
2   3 

7 
3 

47 
23 ^A 7 

3 
We cannot find any A such that Ay = Xy; therefore, y is not an eigenvector of A 
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5   4 
Example 5.2   Let-4 = 

Show that A = 1 is an eigenvalue of A 

Solution: 

1 is an eigenvalue of A if there exists a nonzero x which satisfies the equation: 

Ax — lx 

Substitute A into the equation: 

"5   4" 
2   3 

X\ 

X2  _ 
= 1 X\ 

X2 

Compute the matrix multiplication on the left side of the equation: 

5xi   +   Ax2 Xi 

2xx   +   3x2 x2 _ 

Two vectors are equal if the corresponding components are equal: 

5xi   +   4x2   =   X\ 
2x\   +   3a;2   =   x2 

Subtract x1 and x2 from the right hand sides of the equations: 

Axx   +   Ax2   =    0 
2xx   +   2x2   =   0. 

Solve the homogeneous linear system. 

id-i row 1 to row 2 

4 4   0 
r-sj 

4 4 0 " 
2 2   0 0 Ü 0 

Since there is a row of zeros, there is a free variab 

xi = -x2. The general solution is x = -x2 

x2 

e. Let x2 be the free variable. Then 

s, s ^ 0. 

We found a vector x such that Ar = lx; therefore, 1 is an eigenvalue of the matrix A. 

Once we find an eigenvector x of an n x n matrix A, we can find infinitely many 

eigenvectors, associated with the same eigenvalue A, by multiplying the eigenvector x by a 
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scalar c,c^O. The vector ex is an eigenvector of A associated with A, since: 

A(cx) = c(Ax) = c(Xx) = X(cx). 

Example 5.3   Let A = 

vector x = 

5   4 
2   3 . Then A = 7 is an eigenvalue of A with associated eigen- 

-6 
-3 

We show that ex is also an eigenvector of A when c ^ 0. 

"54' 
2   3 

" -6c' 
-3c = 

" -42c " 
-21c = 7 

6c 
-3c 

The above equation shows that A (ex) = A (ex); therefore, ex is an eigenvector of the 
matrix A associated with the eigenvalue A = 7. 

1. Finding Eigenvalues and Eigenvectors 

We will not always be given the eigenvalues or eigenvectors of a matrix A. There- 

fore, we need to learn how to find all eigenvalues of a square matrix and all eigenvectors 

associated with each eigenvalue. Eigenvalues and associated eigenvectors satisfy the equa- 

tion: 

Ax = Xx, 

where A is an n x n matrix and x is an n x 1 vector. We can rewrite this equation as: 

Ax — Xx = 0, 

where 0 is the n x 1 zero vector. The vector x can also be represented as Ix, where / is the 

nxn identity matrix. We can rewrite the above equation as: 

Ax - XIx = 0. 

Then we can factor out the vector x to get the equation 

(A - XI)x = 0. 

Notice this equation is simply a homogeneous system of linear equations. Recall, homoge- 
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neous linear systems are always consistent with either the trivial solution or infinitely many 

nontrivial solutions. We want the nontrivial solution to the homogeneous system. The ho- 

mogeneous system has a nontrivial solution if and only if (A - XI) is a singular matrix. 

Recall when we say (A - XI) is a singular matrix, this means (A - XI) is not row equiv- 

alent to the identity matrix. Therefore, the solution vector will have a free variable and 

nontrivial solutions. We know (A - XI) is singular if and only if det(A - XI) = 0. The 

equation det(A - XI) = 0 is called the characteristic equation. We will use the character- 

istic equation to find the eigenvalues of the matrix A. 

Theorem 5.1   Let Abeannx nmatrix. Then: 
I.   X is an eigenvalue of A if and only if X satisfies the characteristic equation 

det(A -XI) = 0 

2.  If X is an eigenvalue of A any nontrivial solution of (A - XI)x 
eigenvector of A associated with X. 

0 is an 

Thus, we find the eigenvalues of A by solving the characteristic equation 

det(4 - XI) -- = 0, 

au — X       ai2       '    • aln 
a21          ^22 — A     •     • a2n 

= 0. 

O-nl O-ril ■     •     CLnn — X 

Using cofactor expansion on A to find the determinant of {A - XI) will produce the char- 

acteristic polynomial. If A is n x n, the characteristic polynomial will have degree n in A. 

We want to find the characteristic polynomial because the roots of the characteristic polyno- 

mial are the eigenvalues of A. Sometimes polynomials have repeated roots. If an eigenvalue 

Xi appears as a root of the characteristic polynomial p times, we say A; has multiplicity p. 

Example 5.4   Let^4 
5-2    6 
0    3-8 
0    0      5 

.Thendet(A-AJ) = 
5-A 

0 
0 

-2        6 
3-A     -8 

0      5-A 
This is a triangular matrix; therefore, the determinant of this matrix is the product of the 
main diagonal elements. The characteristic polynomial is (5 - A)2(3 - A). The character- 
istic polynomial has 5 as a root with multiplicity 2 and 3 as a root with multiplicity 1. We 
say eigenvalue 5 has multiplicity 2 and eigenvalue 3 has multiplicity 1. 
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Counting multiplicities, there are n roots of the characteristic polynomial, some of 

which are real and some of which might be nonreal.- While it is possible to have repeated 

eigenvalues, the study of repeated eigenvalues is a bit more complicated and will be left 

for a future course. For now we will study only characteristic equations with distinct, real 

roots. Example 5.illustrates the following theorem. 

Theorem 5.2   If A is annxn triangular matrix, then the eigenvalues of A are the entries 
on the main diagonal. 

Be careful! If A = LU, then the eigenvalues of U are its diagonal entries, but there 

is no reason to expect A to have the same eigenvalues. 

The idea behind the theorem is this. If we have a triangular matrix A, we find the 

eigenvalues of A by solving the characteristic equation det (A - XI) = 0 for A. The matrix 

A — XI looks like 

A-XI = 
an — X       a12 a13 

0        a22 - A       a23 

0 0        a33 - A 

Recall that the determinant of a triangular matrix is the product of the entries on the main 

diagonal. We want to find the eigenvalues of A which satisfy the equation, 

(au - A) (a22 - A) (a33 - A) = 0. 

This means that A equals one of the entries on the main diagonal of A. 

Once we know the eigenvalues of the matrix A, we solve the homogeneous equation 

(A - XI)x = 0 for x. For each eigenvalue A of A, there will be an infinitely many solution 

vectors associated with A. 

Example 5.5   Find the eigenvalues and all associated eigenvectors of the matrix A. 

A = 
2 1 3 
1 1 1 
1   -2   4 

Solution: 
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We want to find the values A and the vectors x such that 

(A - XI)x = 0. 

Find the eigenvalues using the characteristic equation, 

det(A - XI) = 0. 

det(A-XI)   = 
2      1   3 " A 0   0 1 
1      1   1 — 0   A   0 
1   -2   4 0   0   A 

2-A          1          3 
1   1-A          1 
1       -2 4- -A 

Using cofactor expansion along the first row of det(A - XI) we have: 

(2-A) 
1-A      1 
-2     4-A -(1) 

1       1 
1   4-A + (3) 1   1-A 

1     -2 

= (2 - A) [(1 - A) (4 - A) + 2] - [4 - A - 1] + (3) [-2 - (1 - A)] 
= (2 - A) [A2 - 5A + 6] - [3 - A] + 3 [-3 + A] 

^-A^ + TA" 12A 
= (-A) (A2 - 7A + 12) 
= (-A) (A - 4) (A - 3) 

Setting (-A) (A - 4) (A - 3) equal to 0 and solving, we find roots 

A = 0, A = 4, A = 3. 

Let Ax = 0, A2 = 4, A3 = 3. Find the eigenvectors for each eigenvalue by solving the 
homogeneous equation, 

(A - XI)x = 0. 
Remember, we are looking for a nonzero vector x. Since we are looking for a nontrivial 
solution, the matrix A - XI must be singular, otherwise A - XI would be row equivalent 
to the identity matrix and the only solution would be the trivial solution. We know that the 
matrix A - XI is singular, because we found the eigenvalues A by solving the characteristic 
equation det (A - XI) = 0. When we perform Gaussian elimination on the system, we 
will end up with at least one row of zeros. This means that there will be at least one free 
variable. 
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For Ai = 0: 
" (2 - 0) 1 3 

(A-XI)= 1   (1-0) 1 
1 -2   (4 - 0) - 

Solve the homogeneous equation (A - \I)x = 0. Write the augmented matrix: 

(2-0) 1 3   0 
1   (1-0) 10 
1 -2   (4-0)   0 

Add 5 times row 2 to row 3 

2 1 3   0 
0      1/2   -1/2   0 
0   -5/2      5/2   0 

Add -1/2 times row 1 to row 2&3 

2      1   3   0 ~ 
1110 
1-240 

2       1 3   0 
0   1/2   -1/2   0 
0       0 0   0 

Since there is a row of zeros, there must be a free variable. Let x3 be the free variable. Set 
-2 

xz = r. Then x2 = r and x1 = -2r. The general solution is x = r 1 
1 

scalar r. 
For A2 = 4: 

"(2-4) 1 3 
(A-\I) = 1   (1-4) 1 

1 -2   (4 - 4) ^ 
Solve the homogeneous equation (A - \I)x = 0. Write the augmented matrix: 

for any real 

(2-4) 1 3   0 
1   (1-4) 10 
1 -2   (4-4)   0 

Add -3/5 times row 2 to row 3 

-2 13   0 
0   -5/2   5/2   0 
0   -3/2   3/2   0 

Add 1/2 times row 1 to row 2&3 

-2      13   0" 
r -3 i o 
1-200 

-2 13   0 
0   -5/2   5/2   0 
0 0       0   0 

Again, one row is entirely zeros; therefore, there must be a free variable. Let xz be the free 
2 

variable. Set xz = s. Then x2 = s and xx = 2s. The general solution is x = s 

any real scalar s. 
For A = 3: 

for 

(A - XI) 
(2-3) 1 3 

1   (1-3) 1 
1 -2   (4-3) 
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Solve the homogeneous equation (A - XI)x = 0. Write the augmented matrix: 

(2-3) 1 3   0 
1   (1-3) 10 
1 -2   (4-3)   0 

Add -1 times row 2 to row 3 

Add 1 times row 1 to row 2&3 

1 13   0" 
0 -14   0 r^j 

0 -1   4   0 

1 13   0" 
1 -2   1   0 
1 -2   1   0 

-1 
0 
0 

1   3   0 
-14   0 
0   0   0 

Let xz be the free variable. Set xz — t. Then x2 = At and x1 = It. The general solution is 
" 7 "* 

for any real scalar t. x — t 4 
1 

In this example, A has an eigenvalue A = 0. This only happens if there exists x ^ 0 

such that 

Ax = Ox = 6 

This equation has a nontrivial solution if and only if A is not invertible. This means 0 is an 

eigenvalue of A if and only if A is singular. Let's look at an application. [Ref. 3] 

Example 5.6 Two companies A and B find they can mutually gain by cooperating. By 
cooperating, company A's worth will increase by 9% of company B's worth, and company 
B's worth will increase by 4% of company A's worth. However, the companies will only 
cooperate if their values increase at equal percentages. For example, if both companies have 
initial values of 100 units, after cooperating, company A will be worth 109 units (a gain of 
9%) and company B will be worth 104 units (a gain of 4%). Clearly, company B would not 
consider this a fair partnership. Let A0 and B0 be the starting values of the companies before 
the partnership. Let Ai and B\ be the company values after developing a partnership. Find 
the initial values A0 and B0, so that companies A and B realize the same percentage gains 
by solving the linear system, 

A0     +   .09B0   =    Ax 

.04Ao   +     Bo     =    ßi, 

with corresponding matrix equation, 

1     .09 
.04    1 

A) 
Bo 

A, 
B1 

In order for the companies to realize the same percentage gain we want to find scalars A 
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such that 

A A0 

Bo 
We can set the two quantities equal to each other: 

Bx 

1     .09 
.04    1 Bo 

= A A 
Bo 

If this equation can be solved, then A is an eigenvalue of the matrix 

is an eigenvector. Solve the characteristic equation det(A - XI) = 0. 
Ao 
Bo 

1     .09 
04    1 and 

det(A - XI) 1 - A     .09 
.04     1 - A 

= (l-A)(l-A)-(.04)(.09) 
= A2 - 2A + .9964. 

Solving A2 - 2A + .9964 = 0 we have 

A = 1.06 or .94. 
Since the resulting values of the companies is equal to A times the starting values of the 
companies, the companies' values would decrease if we let A = .94, which is less than 1. 
We will disregard this value and try to find an eigenvector for A = 1.06. 

" 1 -1.06       .09       0 
.04       1-1.06   0 

-.06     .09    0 
.04     -.06   0 

Add .04/. 06 time the first row to the second row: 

-.06   .09   0 
0       0    0 

Let B0 be the free variable and Ao = 1.5B0. The starting values of the companies must 
satisfy the relationship: 

Ao 
Bo = £o 

The percentage gain of each company is 6%. 

1.5 
1 

This next theorem relates our previous study of linear independence to eigenvectors 

of a matrix. 
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Theorem 5.3   IfxY ,x2>...,xrare eigenvectors of an nxn matrix A that correspond to dis- 
tinct eigenvalues Xi,X2,...,XrofA, then the vectors xi,x2,...:xr are linearly independent. 

B. COMPLEX NUMBERS 

In section A we found that the eigenvalues of a matrix are the roots of its charac- 

teristic polynomial. We know that the roots of polynomials are not always real; some roots 

may be complex. This suggests that some eigenvalues are complex. Ultimately, we want to 

learn how to find complex eigenvalues and eigenvectors. We begin with the study of com- 

plex numbers. Consider trying to take the square root of a negative number, such as >/—4- 

We cannot do this with any of the tools we currently possess. However, if we introduce an 

imaginary unit i, we can find \/-4- Let the imaginary unit i = V-l- We can develop this 

a little further: 

e = (V=i)2 = -i 

Knowing the imaginary unit will allow us to find the square root of a negative number. Let 

k > 0. Then 

V^k = y/(-l)k = V^lVk = iVk. 

Example 5.7 

V=4 = V(-l)4 = ^f-[Vl = i2 = %. 

The imaginary unit allows us to expand our current number system to include imag- 

inary numbers. An imaginary number is any number of the form ki, k ^ 0. Imaginary 

numbers allow us to build a whole new set of numbers called the complex numbers. A 

complex number z is a number of the form z = a + bi, where a and b are real numbers 

and i is the imaginary unit defined above. The complex number z has a real part, denoted 

re(z) = re(a + bi) = a, and an imaginary part, denoted im(z) = im(a + bi) = b. We will 

denote the complex number system by the symbol C. 
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Let's consider the relationship of the complex numbers C to the real numbers R. 

Every complex number has two parts, a real part, re (z) = a, and an imaginary part, 

im (z) = b. If we assign the value of zero to the imaginary part, im (z) = b = 0, then 

we get a number z = a + Oi = a, which is real. So a real number is a complex number of 

the form z = a + Oi, and it follows that the real numbers are a special subset of the complex 

numbers, i.e., 

R = {a + bi | b = 0} C C. 
a 
b in R2. Just as with vectors, com- A complex number can be associated with a vector 

pi ex numbers are equal if and only if the real partsVe equal and the imaginary parts are 

equal. Given complex numbers z = a + bi and w = c + di, z = w if and only if a = c and 

b = d. If we think of z as the vector a 
b and w as the vector 

equal if and only if their components are equal 

c 
d , these two vectors are 

Example 5.8   If z = 3 + 2i and w = 3 - 2i, we can see that z ^ w because im(z) = 2, 
and im(w) = —2. 

When working with real numbers, we can perform addition, subtraction, multipli- 

cation and division. We can also perform these operations with complex numbers. For 

addition and subtraction of complex numbers, we will associate the operations with vec- 

tor addition and vector subtraction. For multiplication we will treat complex numbers as 

polynomials and for division we must first define the inverse of a complex number. 

1. Addition and Subtraction of Complex Numbers 

Recall that a complex number has two parts, the real part and the imaginary part. 

When we add and subtract complex numbers we want to add and subtract component-wise, 

just as we do with vectors. This means add the real part of the complex numbers to the 

real part and add the imaginary part to the imaginary part. Given two complex numbers 

z = a + bi and w = c + di, we get: 

z + w = (a + c) + (b + d)i, 
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and 

z - w = (a — c) + (b - d)i. 

Example 5.9   Let z = 3 + 2z and w = 4 - li. Then 

z + w = 1 — hi 

w + z = 7 — hi 

z — w = -1 + 9i 

w — z = 1 — 9i. 

In the example we see an illustration of the fact that while addition of complex 

numbers is commutative, subtraction is not. 

2. Multiplication of Complex Numbers 

Multiplication of complex numbers is not done component-wise. Instead, we treat 

multiplication of complex numbers like multiplication of binomials. Each component of 

the first complex number is multiplied by each component of the second complex number. 

The important fact to remember when multiplying complex numbers is that i2 = -1. Given 

two complex numbers z = a + bi and w = c + di, 

z ■ w   = (a + bi)(c + di) 

= ac + adi + bei + bdi2 

= ac + adi + bei — bd 

= (ac - bd) + (ad + be) i. 
real part imaginary part 

Example 5.10   Let z = 3 + 2i and w = 4 - li. Then 

z ■ w = (3 + 2i)(4 - 7%) = 12 - 21i + 8i - 14z2 = 12 - 13i + 14 - 26 - 13i. 

. .Multiplication of complex numbers, like addition, is commutative. 

3. Division of Complex Numbers 

Division of complex numbers requires that we first acquire new tools.  Complex 
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numbers come in pairs, in the sense that every complex number z has a complex conjugate 

associated with it. If z = a + bi, we denote the conjugate of z by putting a bar over 

the number z or a + bi. The complex conjugate is obtained by reversing the sign of the 

imaginary part so that im(z) = -im{z). The real parts do not change: re(z) = re(z). 

z = a + bi = a — bi. 

Example 5.11   Find the complex conjugates of 3 + 4i and -6 - 2i. 

3 + 4? = 3-4i, 
-6 - 2i = -6 + 2i. 

If we multiply a nonzero complex number by its conjugate, we get a real, nonzero 

number, i.e., 

zz = (a + bi)(a - bi) = a2 + abi - abi - b2i2 = a2 + b2. 

Using this fact we can define the magnitude of a complex number z, denoted \z\,as 'zz 

\z\ = y^z = Va2 + 62. 

This is sometimes called the modulus of z. 

Example 5.12   Find the magnitude of z = 3 + 2i. 

|3 + 2i\ = V(3 + 2i)(3-2i) = V&Ti = v7!^. 

Let z be a real number z = a + Oi. Then, \z\ = A/O
2
 + 02 = Va2 = |o|. So the ab- 

solute value of a real number is a special case of the magnitude of z. Some other properties 

of complex numbers are: 

1. z = z if and only z G R. 

2. w'-f z = w + z. 

3. wz = w ■ z. 

4. zz = \z\2. 

5. \wz\ = \w\ \z\. 
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6. \w + z\ < \w\ + \z\. 

To define division of complex numbers we need the multiplicative inverse of a com- 

plex number. If z ^ 0, then z has a multiplicative inverse which we define as follows: 

z-1 = - = — = 
z     zz      \z\2' 

We can use this multiplicative inverse to perform division of complex numbers. Let w, z be 

two complex numbers, z^O. Then 

W i z       wz 
— = W ■ Z       = IÜ— = —3 
Z ZZ ZZ 

(We are multiplying f by 1, where 1 = |.) 

Example 5.13   Let w = 3 + 2« and z = 4 - 2i. Calculate zz, \z\, and f. 

zz = {4- 2«")(4 + 2i) = 16 - 4i2 = 16 + 4 = 20. 

|*| = Va2 + 62 = ^42 + (-2)2 = y/W+l = V2Ö. 

w_wz__ (3 + 2z)(4 + 2i) _ 12 + Ui + Ai2 _ 8 + 14« _ 2      7 . 
* ~ ** ~ (4 - 2i)(4 + 2«) ~ 20 ~     20     ~ 5 + 1Ö?' 

C. THE COMPLEX PLANE 

We can plot a complex number as a point on the complex plane in the same way that 

we plot a vector in R2 as a point on the cartesian plane, see figure 12. The complex plane 

looks like the cartesian plane except the horizontal axis is called the real axis, representing 

real numbers of the form (a, 0), and the vertical axis is called the imaginary axis representing 

imaginary numbers of the form (0, b). We then plot the complex number a + bi as« the point 

with cartesian coordinates (a, b) on the complex plane. The point (a, b) may then be labeled 

a + bi. Recall that we found that a real number is a special case of a complex number 

z = ä'+ bi, where 6 = 0. If we plot the real numbers we see that real numbers are ordered. 

Given two real numbers u,w e R, either u < w, u > w, or u = w. Complex numbers 

cannot be so ordered. 

When we plot a complex number z = a + bi and its conjugate z — a - bi on the 
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Figure 12. The Complex Plane 

complex plane, we see that the complex conjugate is a reflection of the original complex 

number across the real axis (horizontal axis), see figure 13. We can calculate the distance 

from the origin to the point representing the complex number by computing the magnitude 

of the vector from the origin to the point representing the complex number. We already 

know the formula. Let z = a + bi. The distance from the origin to the point z is 

\z\ — \J~zz = Va2 + b2 

The geometric interpretation of complex addition and subtraction in the complex plane is 

completed in the same way that we add vectors in the real plane using the parallelogram 

rule. Let z = a + bi and w = c + di. Then z + w is the point in the complex plane which is 

the 4th vertex of a parallelogram formed by the origin, z, w, and z + w, see figure 14. The 

geometric interpretation of complex multiplication in the complex plane requires that we 

take a side trip and learn how to represent a point in a plane using a new coordinate system. 

In example 5.14 we locate the point z in the plane by beginning at the origin and 

projecting a ray from the origin along the positive real axis. This is called an initial ray. The 

initial ray has angle 9 = 0°. We next project a second ray from the origin in the direction of 

the vector. A point z with cartesian coordinates (a, b) can also be represented using polar 

coordinates (r, 9), where r is the distance from the origin to z and 9 is the angle between the 

positive real axis and the vector representing z. By definition of modulus, we have r = \z\. 
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/*   atbl 

-b 

^s\                            a 

\-   a-bi 

Figure 13. Complex Conjugate 

We call 0 the argument of z, denoted arg (z). 

Example 5.14   Let z = 1 + i. In the complex plane, z is represented by the vector 

which has cartesian coordinates (1,1), see figure 15. We can also represent the point"z by 
the coordinate (y/2, f) where \/2 is the distance from the origin to the point z and f is the 
angle from the positive real axis to the vector representing the complex number. 

To find 0, we first need to define some basic concepts. 

1. 0 is positive when measured counterclockwise from the positive real axis, and nega- 

tive when measured clockwise from the positive real axis. 

2. 0 is not unique. The angle f is the same angle as ^ which is the same angle as =jL. In 

general, any angle 0 is the same as the angle 0 + 2kir, where k is any integer. So, ifz^O, 

then arg (z) takes on infinitely many values.. 

We use these concepts to further define what we mean by arg(z). The argument of z can be 

viewed as the set of all arguments of z, a set containing infinitely many elements. 

arg (z) = 0 + 2&7T,     k any integer. 

The principal argument is the single argument of z that is in the range -iv < 0 < 7r. 
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Figure 14. Addition of Complex Numbers 

Just as the complex number z has cartesian coordinates and a representation in carte- 

sian form, the same complex number has polar coordinates and a representation in polar 

form. Consider the complex number z = a + bi. In the complex plane, z is the point (a, b). 

z can also be written as the point (r, 0). Since 0 is the angle between the positive real axis 

and the directed line segment from the origin to the point (a, b) and r is the magnitude ofthat 

directed line segment, r = \z\ = \/a2 + 62, from basic trigonometry we have cos0 = * 

and sin 0 = -. We can then write a = r cos 0, and 6 = r sin 0. If we substitute these values 

for a and b into a + bi, we obtain: 

a + bi = (r cos 0) + (r sin 0) £. 

Factor out an r and we obtain: 

a + bi = r (cos 0 + i sin 0) 

So, we can change from cartesian form to polar form and vice versa for z using the following 

formulas: 

a = rcos0,    6 = rsin0,    r = Va2 + 62,    tan0=-, 

which gives us: 

cartesian coordinates: (a, b) cartesian form: a + bi 
polar coordinates: (r, 0)      polar form: r (cos 0 + i sin 0) 
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1. y\|l,1) -  P(r.fl) 

t     S                  \  8   angle between 
/                      1       fntllal ray and 
/                           1        vector representing 
/                              1        the complex 

X                                 j         number 

1                      Initial Ray ' 

Figure 15. Polar Coordinates 

Given a complex number z — a + bi, the polar form of the equation for z is 

a + bi = r cos 9 + ir sin 9 

= r (cos # + i sin 0) 

=   \z\(cosO + isin9) 

The most common mistake made in converting from the cartesian to the polar form of the 

equation is the miscalculation of the argument 9. When calculating 9 we must make sure that 

we locate the argument in the correct quadrant of the plane. A mistake can occur when we 

calculate 9 using the formula tan 9 = |, but we do not verify that the solution is consistent 

with the complex number z. 

Example 5.15 Consider the two complex numbers, z = ^— ^i, and w = — ^+ ^i, 
see figure 16. When we plot the points representing z and w, we find that z is in the fourth 
quadrant of the complex plane with argument 9 = ^, while w is in the second quadrant of 
the complex plane with argument (j>=^f. If we do not think about the physical placement 
of the angles in the plane, and use only the formula, we find that 

and 

r 

arg (z) — tan-1 - = tan-1 (—1) 

arg (w) — tan x - = tan 1 (—1) 
a 
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Figure 16. z = ^ - &i     and to 
2 T 21 

If we are not conscious of the quadrant we want, we could erroneously choose 

&rg(z) = arg (to) = —-, 

or 

arg (z) = arg (w) = 
or switch the arguments altogether. 

3TT 

Now we return to multiplication of complex numbers using polar coordinates. Given 

two complex numbers z = a+bi = \z\ (cos 9 + i sin 9) and w = c+di = \w\ (cos 0 + i sin $ 

we calculate zw using the "foil" method as follows: 

zw   = [\z\ (cos 9 + i sin(9)] • [|w| (cos (j) + i sin0)] 

=    [|2r|cos6>+ |^| i sin 0] • [|w|cos0 + H«sin</>] 

=    \z\ \w\cos9coscj) + \z\ \w\ cos 9i sin cf)+\z\ \w\ coscßismO + \z\ \w\isin9isin(f) 

=   \z\ |u>|cos0cos0 + \z\ \w\ cos 9i sin (ß + \z\\w\ cos <f)i sin 9+ \z\ \w\ i* sin 9 sin cfi 

Factor out \z\ \w\ and regroup the equation into re (zw) and im (zw), remembering that 

i2 = -1: 

\z\ \w\ [(cos 0 cos 0 - sin 9 sin <f>) + i (cos 9 sin 0 + cos 0 sin 6»)]. 
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Using trigonometric identities we get the final form, 

zw = \z\ \w\ [cos (9 + <j>) + i sin (9_ + </>)]. 

To put this in words, the magnitude of the product zw is equal to the product of the magnitude 

of z with the magnitude of tu, and the argument of the product zw is equal to the sum of the 

argument of z with the argument of w. 

Example 5.16   Let z = 1 + i and let w = Ai. 

Convert z and w to polar form. Then, compute zw in both cartesian and polar form. 

Solution: 
First we calculate the magnitudes of z and w 

\z\ = s/a2 + b2 = Vl2 + l2 = V2, 

\w\ = Va2 + b2 = VO2 + 42 = \/l6 = 4. 
Now we compute the argument for z: 

0   =   tan-1- 
a 

_1   1 
=   tan     - 

1 
=   tan""1!. 

Our choices are 6 = =^- or 9 = |. Since z is in the first quadrant we want 9 = arg (z) = |. 
Thus the polar equation for z is 

z = \/2 (cos — + i sin — ) . 
V      4 4/ 

Now compute the argument for «;: 

-16 
a 

-i4 

0   =   tan 

=   tan"    o> 

which is undefined. Our choices are </> = | or 0 = -^. Since to is a positive pure imaginary 
number, we want <f> = arg (w) = |. So the polar equation for iw is 

tu = 4 ( cos — + i sin — 1 
V       2 27 
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Finally, we can compute zw. In cartesian form we get 

zw   =   (l + i)(0 + 4z) 
=   Q + 4i + 0 + 4i2 

=   -4 + Ai. 

In polar form we use the formula we developed for multiplication using polar coordinates, 
to obtain 

zw   =   v2 (cos-+isin-J • 4 (cos-+ isin- 
V      4 4/      V      2 ; 

=   \z\\w\[cos(9+ 4>)+is\n(9+ $)) 

=   V2 ■ 4 ( cos ( — j + i sin ( -^ 

Note that if we evaluate the sine and cosine we obtain 

zw   =   V2.i(^+i^ 

=   2(-2)+i2(2) 
=   -4 + 4i, 

which is the cartesian form of z + w as computed above. 

Suppose we let w = z. Then when we compute zw, we are actually computing 

zz = z2. If we multiply the result z2 with z, we are actually computing z3. We can continue 

in this manner to compute zn. Once we know how to multiply complex numbers using their 

polar form, we can compute powers of complex numbers. 

Let z = r (cos 9 + i sin 6). Then 

zz   =   z2 = rr (cos (0 + 6)+ism (0 + 0)) 

=   r2 (cos 29 + z sin 2(9). 

Let's try another step. 

z2z   =   zz = r2r (cos (29 + 9) + i sin (29 + 6)) 
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=   r3 (cos 30+ i sin 30). 

This process continues and yields a general formula known as DeMoivre 's Theorem, which 

states that if z = r (cos 0 + i sin 0), then 

zn = rn (cos n9 + i sin n9)    n = l,2,... 

If we define 2° = land;?-" = ~, then, for all integers n = 0, ±1, ±2, ...,DeMoivre's The- 

orem will apply. Remember when we have the formula ^, we are working with complex 

division. 

Example 5.17   Let z — 1 + i. Compute zA. 

Solution: 
Using DeMoivre's theorem, we get z4 = r4 (cos 40 + i sin 40). We already know 

the values for r and 0 from the previous example: 

*4 - «HG)+™<(i)) 
=   4 (cos 7T + i sin 7r) 
-   -4. 

If we can compute powers of complex numbers, it would seem logical that we can 

compute roots of complex numbers. Consider zn where n is a positive integer. We call z* 

the nth root of z. We will use DeMoivre's theorem to develop a formula for the nth roots of 

a complex number. 

Let w = zn. This means z = wn. Now write z and w in polar form: 

z = r (cos 0 + i sin 0), 

and 

w = p (cos 0 + ^ sin (f>). 

We also know how to write wn using DeMoivre's Theorem: 

wn = pn (cos n<p + i sin n</>). 
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We know that z = wn. In polar form, we have 

r (cos 9 + i sin 9) = pn (cos ncf) + i sin ruf)). 

Now we equate the magnitudes, obtaining r = pn, and it follows that p = r». Since r is 

the magnitude of z, r > 0. Therefore, p is the nonnegative nth root of r. Now equate the 

arguments, obtaining 

e = n(p. 

Recall, that 9 is not unique. Any angle 9 is equal to the angle 9 + 2kir, for any integer k. 

So if A; is an integer, we have 

n(/) = 9 + 2kn 

or 
,      9 + 2k-K 

<p = . 
n 

We now rewrite w using these values for p and 4>: 

w   =   p (cos (f> + i sin (ft) 
i /      9 + 2kTi     . .   9 + 2fc7r\ 

=   rn    cos 1-1 sin     . 
V rc n      / 

We began with the assumption 

w = z*. 

i       i /      Ö + 2fc?r     . .   Ö + 2k-K 
w = zn = r« I cos h z sm 

This means 

n n 
Let's change the format of the above equation to: 

z± = r» f cos - (6» + 2A;?r) + i sin - (9 + 2kix) j . 

When we let k = 0,1, ...,n - 1, we get exactly n distinct values of z». These n distinct 

values are the nth roots of the complex number z. Notice that the n distinct roots are also 

complex numbers. What happens if we let k > n? The result will be a repeated root. Let's 

look a little closer at the equation, 

Zn =ri fcos-(Ö + 2A;7r) + isin-(Ö + 2A;7r)J ,    A; = 0,1, ...,n-1 
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If we let m = £ and 9 — 9 + 2kn, then we can write 

z
m = r

m (cos m6 + i sin rnß). 

This is DeMoivre's formula. The formula for finding the roots of a complex number is 

summarized in the following theorem. [Ref. 2] 

Theorem 5.4 Every nonzero complex number z = r (cos 9 + i sin 9) has n distinct nth 
roots for any positive integer n. Each root has magnitude r» and the arguments are the 
angles ttfJLfor k = 0,1, ...TO - 1. 

Theorem 5.4says that a complex number z has TO distinct nth roots for any positive 

integer TO. This means a complex number z has two square roots, three cube roots, four 

fourth roots,..., TO nth roots. Let's do an example. 

Example 5.18   Let z = l+0i. Find the formula for the nth roots of z. 

We want the equation, 

z-n. = r» I cos - [9 + 2A;7r) + i sin - (9 + 2kn) ) . 

Begin by finding r: 
r = |JZ| = Vl2 + 02 = 1. 

Now find the principal argument 9: 

i b 9   =   tan"1 - 
a 

_,0 
=   tan     — 

a 
=   tan_10. 

We have two choices for 9, 9 = 0 or (9 = 7r. Since z is a positive pure real number, we want 
9 = 0. Substituting 1,0 for r, 6, respectively, we have 

Zn    =   ri f cos - (6> + 2A;7r) + i sin - (#•+ 2fc7r) ] 

=   1* fcos-(0 + 2fc7r) + isin-(0 + 2Jfc7r) ) 

/      2kn 2kn\ 
=      cos |-«sm     ,     A; = 0,1,2,...,TO- 1. 

\       TO TO y 

This will give us TO nth roots of 1. These are also known as , the nth roots of unity. Let's 
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use this formula to find the five fifth roots of z. Setting n = 5, 

i       /      2fc?r 2A;TT\ 
zs = f cos-— + ?sm —- 1 ,     k = 0,1,2,3,4, 

we obtain the formula for the five fifth roots of z. Evaluate for each k. 

For k = 0, this takes on the value 

/      2(0)TT     . .   2(0)TT\ 
cos — h t sin —V— 1 = cos 0 + i sin 0 = 1. 

For k = 1, this takes on the value 

2(1)TT      . .   2(1)TT\ 2TT     .  .   2TT 
cos —V h i sin    V       ) = cos —- + i sin — » 0.309 + 0.951i. 

For A; = 2, this takes on the value 

2(2)TT      .  .   2(2)TT\ 4TT 4TT 
cos    v

c
y    + i sin -y—    = cos — + i sin — » -0.809 + 0.588i. 

5 5/5 5 

For A; = 3, this takes on the value 

/      2(3)TT     . .   2(3)TT\ 6TT 6TT 
cos    y     + ? sin    V;        = cos — + z sin — w -0.809 - 0.588«. 

V 5 5/5 5 

For k = 4, this takes on the value 

/      2(4)TT      . .   2(4)?r\ 8TT 8TT 
I cos       7    + « sin    y     1 = cos — + i sin — « 0.309 - 0.951i. 

Just for fun, let's compute the root for k = 5, 

'      2(5)TT     . .   2(5)TT\ 10TT     . .   10?r 
cos — 1- % sin —-—      =   cos —-—V i sin ■ 

5 5    ) 5 5 
=   cos 27T + i sin 27r 
-   1. 
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This is the same root that we got when we let k = 0, a repeated root as stated earlier. 

If we plot each root we will produce figure 17.    We see that the five roots are the ver- 

Figure 17. 5th Roots of the Unity 

tices of a regular polygon of 5 sides inscribed in the unit circle around the origin, with one 
vertex located at (1,0). 

It turns out that for any complex number z, the kth roots of z are equally spaced 

around a circle of radius $/\z\ centered about the origin. 

Example 5.19   Let z = 1 - i. Find the fourth roots of z. 

Begin by finding the magnitude of z 

\z\ = yjv + (-1)2 = y/2. 

Now find the principal argument 9 for z. 

b 
9 = tan"1 

a 

= tan-1 — 
1 

= tan_1-l. 

The two choices for 9 are 9 = -f and 8 = f. Since z is in the fourth quadrant, we want 
9 — -J-. Now substitute into the formula 

z* = A ( cos - (9 + 2k7v) + i sin - (9 + 2kir) ) 
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= Vr cosl I) [~T + 2k7) +isinÜ) (x + 2^N ,    fc = 0,l,2,3. 

For k = 0, this takes on the value 

2* 
/-TT/4\      . .   /-TT/4

N 

cos   —-—    +jsm    —7— 

2* 
—7T        .   .     — 7T 

COS —— + I sm  
16 16 

For k = 1, this takes on the value 

-7r/4 + 27rN 

2* cos + isin 
-TT/4 + 2TTX 

1 
2s 

77T        .   .     77r' 
cos —- + i sm — 

16 16 

For k = 2, this takes on the value 

2s 
-7r/4 + 47r\      . .    /-7r/4 + 47r 

cos I  ;  l+jsm1 

2* 
1Ö7T        .   .     157T' 

cos ——- + % sm  
16 16 

For k = 3, this takes on the value 

'-71-/4 + 671-' 
28 cos + isin 

-7T/4 + 67rN 

= 2s 
23TT     . .   23TT' 

cos —— + 1 sm  
16 16 

If we plot these values, they will be the vertices of a polygon with 4 sides centered around 
the origin, inscribed in a circle of radius 2s. 

Before leaving our study of complex numbers, we want to consider one more use of 

complex numbers in the exponential function ex. 
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D.        COMPLEX EXPONENTIAL FUNCTION 

A well known result in calculus is the ability to compute the exact value of the 

functions ex, sin re and cos x using the formulas: 

or 
ex = l + x + — + ■■■ + 

x" 
nl E 

n=0 

X" 

nf 
(V6) 

xz     x5 -271+1 
smx = x--~ + + (-1)" = V {     ' 

3!      5! ^{    >   (2n + l)!      .   1L   (2n + l)!   ' 
(V7) 

COS X = 1 
X2       XA 

+ --... + (-!)' X 2n 

-E (-l)"x 
n ,y.2n 

(Y8) 2!      4! ' v   ~'   (2n)! ^     (2n)! 
We want to define e*, where a; is a complex number a + bi. We have the following 

rule of exponents: 

This means we can write 

ea+b = eaeb^ 

ea+bi = eaebi_ 

We can compute ea using the formula V6: 

a a2     a3 

"  =1+a+2!+3! 

But we do not have a rule for complex exponents, so how do we represent eK? Begin by 

using the formula V6. 

2!   ^   3! 4!   +   5! 6! 

2! 4! 6! 3! 

n     b2     bA     b6 

~   1_2!+4!"6!+-"+i 

=   cos (6) + i sin (b), 

•       b3     65 
5 1 1_ 

3!     5! 

5! 
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which means we can write 

ea+bz = eaeU = ea ^ ^ + • gin ^ _ 

This is known as Euler's formula. Notice that this is a polar form for ea+bi where the 

magnitude of ea+bi is ea. Euler's identity is a result of Euler's formula when a = 0. 

e™ = cos 6 + % sin 6. 

What happens if we have e i6l Using Euler's identity and the facts that: 

cos (—9)   —   cos 6 , 

sin(—6)    =   — sm6, 

cos2 0 +sin2 0 = 1, 

e"*0   =   cos (-0)+i sin (-0) 

=   cos 0 — i sin 0. 

We also know that 

oiß 

and 

we can write 

cos 0 4 i sin 0 

Remember, this is complex division: 

1 cos 0 — z sin 0 
cos 0 4 i sin 0 cos 0 4- i sin 0    cos 0 - i sin 0 

cos 9 — i sin 0 
cos2 0 + sin2 9 

=   cos 0 — i sin 0. 
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We can conclude that 

e *  = cos9 — ism6. 

Example 5.20   Given e7™, we write the cartesian form (a + bi): 
Solution: 

ea+bi = e
a [cos (b) + i sin (6)] 

eni = e°[cos(7r)+zsin(7r)] 

= i[-i + o]- 

Example 5.21   Given e2_3i, write the cartesian form (a + bi) : 
Solution: 

e2~3i = e2 [cos (-3) + i sin (-3)] 

= e2 [cos (3) - i sin (3)]. 

Example 5.22   Given e4+f \ write the cartesian form: 
Solution: 

e«IW[coS(f)+Isin(f) 
= e4 [0 + i 

le 

Example 5.23   Given el+l\ write the cartesian form: 
Solution: 

0a+bi      o e° [cos (b) + i sin (b)] 
7T        . 7T 

cos — + i sm — 
4 4. 

= e* 
A/2  ,  .y/2 

V 2 2     . v 2 I 

Example 5.24   Given e2_2i, write in cartesian form. 
Solution: 

e2-* = el [cos (-2) + i sin (-2)] 

= e2 [cos (2) - i sin (2)] 

= e2 cos (2) - ie2 sin (2). 
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This gives us a new way to write the polar form of z. 

z   =   a + bi 

=   \z\ [cos6 + ismd] 

Euler's idenity 

=    \z\ e 

=   re 

id 

Example 5.25   Given z = Si, write the polar form using the exponential function. 

First we find \z\ : 

\z\ = V¥ = 3. 

z = \z\ [cosö + isinö] 

= 3 [cos 6 + i sin 6]. 

Then we find arg (z): 

tan x 9 = -,    undefined 

9-I 
Finally we substitute into the polar equation: 

z = S 
7C        .   .     7T 

cos — + % sm — 
2 2. 

= 3e** 

Example 5.26   Given z = 1 - i, write the polar form using the exponential function. 

Find \z\. 

\z\ = A/I
2
 + {-if = y/2. 

l-i   =   V2[cos0 + ism6} 

=   V2 

=   V2e^ 

— 7T        .   .     —7T 
cos ——h % sm -— 

4 4 

We conclude this section with properties of the complex exponential function. 
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Properties of the complex exponential function 

Given complex number z = a + bi and w - c + di. 

1. ezew = ez+w. 

2. ez ^ 0, for all z. 

3. e~z = ^, for all 2;. 

^-  eM  — 

5. If 6 is real, e6* =1 

E. COMPLEX EIGENVALUES AND EIGENVECTORS 

We study complex eigenvalues to uncover "hidden" information about matrices with 

real entries that arise in real life problems such as motion, vibration, and rotation in space. 

The methods we learned for finding real eigenvalues and eigenvectors apply to finding 

complex eigenvalues and eigenvectors. Let's begin with an example. 

Example 5.27   Let A 

A. 

2   -1 
1      2 Find all eigenvalues and associated eigenvectors for 

Solution: 
We first solve the characteristic equation: 

det (A -Xi)   =   0 

2-A     -1 
1       2-A 

A2-4A + 5   =   0 

0 

A 
4± V=4 

A   =   2±i. 

The eigenvalues for the matrix A are X1 = 2 + i and A2 = 2 - i. 
Now we find the eigenvectors associated with each eigenvalue, by solving the correspond- 
ing homogeneous system. 
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-1 
1 2 — (2 + i) x2 

For Ax = 2 + i, we have: 

2 - (2 + i) 
1 

Write the augmented matrix: 

Add —i times row 1 to row 2 

This gives us the equation, 
—ix\ — x2 = 0. 

Let #2 be the independent variable. Then we get 

(A-\xI)x   =   0 
0 
0 

-i -1   0 " 
1 -i   0 

-i -1   0 1 
0 0    0 

The eigenvector is 

x 

—IX\ — x% or 
Xi     = ix2. 

ix2 

X2 

0 Zl 
i 
1 .       ^2 

The parametrized solution is 

a; = s 

We can check our solution by choosing s = 1 

s^O. 

Ar   =   Ax 
2   -1 
1     2 1 

2i — 1 
i + 2 

=   (2 + 0 

2i-l 
i + 2 

Therefore, Ai = i is an eigenvalue for the matrix A with associated eigenvector 
i 
1 

x = s 

For A = 2 — i.we have 

(A-A/) 5   =   0 
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2 — (2 — i) -1 
1 2 - (2 - i) 

xt 

x2 

0 
0 

Write the augmented matrix: 

Add i times row 1 to row 2: 

This gives us the equation, 
ix\ — x2 = 0. 

Let £2 be the independent variable. Then we get: 

i -1 0 " 
1 i 0 

% -1 0 " 
0 0 0 

IXi 

Xi 

X2,OT 

-ix-i. 

The eigenvector is 

x 
-ix2 

X2 

x2 x2^0. 

The parametrized solution is 

x = t 
—i 

1 ,   t^o. 

We can check our solution by choosing t = 1 : 

Ac   =   Ax 
2   -1 
1     2 

—i 
1 =   2-i 

—i 
1 

" -2i - 1 " " -2i - 1 ' 
-i + 2  _ —i + 2  _ 

Therefore, A2 = 2 - i is an eigenvalue for the matrix A with associated eigenvector 

We can see a special feature of complex eigenvalues in our example. 

Ai   =   2 + i, 

A2   =   2 — i. = AT 
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When the matrix A is real, its complex eigenvalues and complex eigenvectors appear in 

conjugate pairs. 

E        EXERCISES 

1. Find the characteristic polynomial and all eigenvalues and associated eigen- 
vectors for the following matrices. 

a) 

b) 

"25" 
4   1 

" 3   -5 " 
0      2 

c) 
3   0   0 
1 0   4 
2 0   1 

d) 
5 1 0 
0 0 0 
2   0   1 

e) 
-2 2 0 
0 3 0 
2   0   1 

f) 

4 0 0 2 
0 0 0 0 
2 0 0 0 
0 0 0 3 

2. Is A = 2 an eigenvalue of 4   1 
2   3 

3. Is 1 
4 an eigenvector of 6   2 

3   1 
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4. Calculate (5 - 4i)(2 + 2i). 

5. Calculate (1 + i) + (2 + 2i). 

6. Calculate ^ 

7. Calculate (2 + 4t)(3 + 6i). 

8. Calculate^??. 

9. Calculate z3 + 3i2 - 4 

10. Calculate^ + 4i| 

11. Letz = 5-2i. Find |z|. 

12. Let s = 4 + 4z, 
a) Find the principal argument of z. 
b) Write z in polar form. 

13. Let z = 4i, let w = 2 + 2i 
a) Compute zu> in rectangular form (a + bi). 
b) Write z and w in polar form. 
c) Compute zw in polar form. 
d) Compute z3 in rectangular form. 
e) Compute z3 in polar form. 

14. For each complex number z, compute \z\ and the principal argument of z, 
and write z in polar form (for some problems the principal argument may involve 

, tan"11). 
a) z = 2 + 4i 
b) z — 4 - i 
c) 2 = 6 + 3z 

15. Write z in rectangular form (a + 6i) where z = 2 [cos (^) + i sin (^)] . 
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16. Find 162. 

a)e 
b)e 

lJ- .Writ0 tfte exponential as a complex number in cartesian form (a + bi). 

3-5i 

18. Writer in polar form reie. 
a) z = 4i 
b)z = l + i 

19. Find all square roots of =j- + &i. 

20. Plot the six sixth roots of 1. 

21. Find all eigenvalues and eigenvectors of 2 
-2 

4 
-2 

22. Find all eigenvalues and eigenvectors of -4 
5 

-2 
2 
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APPENDIX A.       SOLUTIONS TO EXERCISES 

CHAPTER ONE 

l.a. Nonlinear, (3xixs) 

l.b. Linear 

I.e. Nonlinear, (— x\ ) 

l.d. Linear 

I.e. Nonlinear, (—x^1) 

l.f. Linear 

l.g. Nonlinear, (4yz) 

l.h. Linear 

l.i. Linear - 

l.j. Nonlinear, (-3x3) 

2.a. 
-3      5 " " -3      5      1 " 

1      2 J 1      2   -4 
4   -1 4   -1   -3 

Coefficient Matrix                       Augmented Matrix 

2.b. 
2   1 3   0      0 " "21      30      0      1 " 
0   1    - -13      0 ) 0   1-13      0-4 
1   0 5   0-2 10      5   0-2      6 

Coefficient Matrix                                                   Augmented Matrix 

3.a. 
C rci   = = fs-!* + i«-4 
1   ^2   = 
1   x3   ■- 

=                s 
t               ,    -M,« are scalars. 

[  Xi    '- =               u. 
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3.b. 

3.C. 

V = Aq — r - 5s - 3* 
w = q 
X z= r               ,    g,r,s, tare 
y — s 
z t. 

X s-6t 
< y = s      ,    s,t are scalars 

z = t 

4.a. 

Solve for y in the first equation: 

2x   +     y   =    5 
-3a;   +   2y   =   3. 

y = 5 — 2x. 

Substitute for y in the second equation: 

-3a; + 2 (5 - 2x) 

-3a + 10 - 4a 

-7a 

x   = 

3 

3 

-7 

1. 

Solve for y : 

y = 5-2(1) 

=   3. 

The linear system has a unique solution 

4.b 

f a   =   1 
I y  =  3 

a   =   1 
y = 2 
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4.c 
2x   -   3y   -     z   =      6 
x   +   6y   -   2z   =    1.2 

-x   +   Ay   +   6z   =   24. 
Solve for a; in the first equation: 

3       1 
X=2y+2Z + 3- 

Substitute for x in the second and third equations: 

^y + -z + 3\+6y-2z   =   12 

^y+-z + 3j+4:y + 6z   =   24. 

These equations simplify to: 

Solve for y in the second equation: 

15y-3z   =   18 

5y + llz   =   54. 

1       6 
y=r+5- 

Substitute into the third equation: 

Back substitute to solve for y 

5[-z+-J+llz   =   54 

z   =   4. 

1       6 y = r+5- 
V   =   5(4) + 5 
y =  2. 
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Back substitute to solve for x : 

3       1 
x   =   2»+2* + 3 

=   ^(2) + ^(4) + 3 

=   8. 

( x   =   8 
This linear system has the unique solution <   y   =   2   . 

[ z   =   4 

4.d 
6x2   =       6 

4xi   + _   a?2   =   -3. 
Solve for X2 in the first equation: 

x2 = 1. 

Substitute for x2 in the second equation: 

4a;i + l   =   -3   ■ 

4xi   =   -4 

Xi   =   —1. 

{Xi    —    —1 
— 

4.e. 
-xi   +     x2   +   3a;3   =    3 

-2x!   +     x2   +   5x3   =    0 
-3xi   +   2x2   +   8x3   =   3. 

Solve for x\ in the first equation: 

x\ = x2 + 3x3 — 3. 

Substitute into the second and third equation: 

-2 (x2 + 3x3 - 3) + x2 + 5x3   =   0 

-3 (x2 + 3x3 - 3) + 2x2 + 8rc3   =   3. 
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These equations simplify to: 

-x2 - x3 + 6   =   0 

-x2 - x3 + 6   =   0. 

Solve for x2 in the second equation: 

x2 = -xz + 6. 

Substitute into the third equation: 

-(-x3 + 6)-x3 + 6   =   0 

0   =   0. 

This equation is true for any value assigned to x3; therefore, x3 is an independent variable. 

Solve for xx in terms of x3 : 

xx   =   — xz + 6 + 3^3 — 3 

xi   —   2xz + 3. 

This linear system has infinitely many solutions. The general solution is: 

xi   =    2s + 3 
x2   =   — s + 6   ,    s is a scalar. 
Xz    = s 

4.f. 
-xi   +     x2   +   3x3   =    3 

-2xi   +     x2   +   5x3   =    0 
-3xi   +   2x2   +   8x3   =   4. 

Solve for xx in the first equation: 

xi = x2 + 3x3 - 3. 

Substitute into the second and third equation: 

-2 (x2 + 3x3 - 3) + x2 + 5x3   =   0 
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-3 (x2 + 3x3 - 3) + 2x2 + 8x3   =   4. 

These equations simplify to: 

-x2 - xz + 6   =   0 

-x2 - x3 + 5   =   0. 

Solve for x2 in the second equation: 

%1 = -Xz + 6. 

Substitute into the third equation: 

- {-xz + 6) - x3 + 5   =   0 

-1   =   0. 

This equation is not true for any value assigned to xZ] therefore, this linear system is incon- 

sistent. 

5.a. 
Augmented Matrix 

2-3-1     6 
1      6   -2   12 

-1      4      6   24 
Add -1/2 times row 1 to row 2 
Add 1/2 times row 1 to row 3 

Write the corresponding linear system: 

2-3-1     6 ' 
0    I»    =3 ■   9 
0      \     h   97 u       2      2     z/ . 

Add -1/3 times row 2 to row 3 

2-3-1     6 
0     f    =T     9 

0      0      6   24 
This is row echelon form. 

2x   -     3y   -     z 

f V   ~   \*   =      9 
6z   =   24. 

Solve for z in the third equation: 

2 = 4. 

Back substitute for z into the second equation: 

15       3 
^y--2z  =  9 

15       3^, 
V^-ö(4)   =   9 
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15 
15 

y  =  2. 

Back substitute for y and z into the first equations: 

2x — 3y — z =   6 

2x - 3 (2) - 4 =   6 

2x =   16 

X =   8. 

This linear system has a unique solution: 

x   = 
y  = 
z    = 

8 
2 
4 

5.b. 
Augmented Matrix 

-113 3 
-2150 
-3283 

Add -2 times row 1 to row 2 
Add -3 times row 1 to row 3 

-113 3 
0 -1 -1 -6 
0   -1   -1   -6 

Add -1 times row 2 to row 3 

-113 3 
0 -1 -1 -6 
0      0      0      0 
This is row echelon form. 

Write the corresponding linear system: 

-xj   +   x2   +   3x3   =       3 
-   x2   -     x3   =   -6. 

There are two equations and three variables. There is one independent variable. Solve for 

x% in terms of x3 in the second equation: 

^2 = -xz + 6. 

Back substitute for x2 in the first equation: 

-x1 + (-x3 + Q) + 3x3   =   3 
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-x1 + 2xz   =   -3 

xi   =   2x3 + 3. 

This linear system has infinitely many solutions. The general solution is: 

x1   =    2s + 3 
x-i   =   — s + 6   ,    s is a scalar. 
x3   —        s 

5.C. 

Augmented Matrix 

-113   3* " -1 1 3 3 " '   -1 13      3" 
-2150 r*~> 0 -1 -1   - -6 r^/ 0 -1   -1   -6 
-3284 0 -1 -1   - -5 0 0      0      1 
d -2 times row 1 to row 2 Add •1 times row 2 to row 3 This is row echelon form. 

Add -3 times row 1 to row 3 

The augmented matrix has a row [0 0 0 b ], b ^ 0; therefore, the corresponding 

linear system is inconsistent. 
Augmented Matrix 

5.(1. 

10   13      5 1 0      13      5" ' 1 0 1 3 5 
1-2   0-3   -9 0 -2      1      0-4 0 -2 1 0 -4 
2      2   1      2    18 0 2-1-4      8 

r^j 

0 0 0 -4 4 
2      11      5    12 0 1-1-1      2 0 0 -l 

9 -1 0 
Add 1 times row 1 to row 2 Add 1 times row 2 to row 3 Interchange rows 3&4 

A.dd -2 times row 1 to rows 3&4 Add 1/2 times row 2 to row 4 

10     13      5" xx                     + x3 + 3rr4 
  5 

0-2      1      0-4 -   2x2   + Xz = -4 
0      o^-l      0 3 

~2 
l-xz — £4 = 0 

0      0     0-4/ i — 4xA = 4. 
This is row echelon form. 

This linear system has the unique solution: 

6 
3 
2 

-1. 
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5.e. 

Augmented Matrix 

"ill        9 " " 1   1 1   9 " "ill      9 
-2   -1   -1   -15 r-«-' 0   1 1   3 (-S-< Oil      3 
-111-4 0   2 2   5 0   0   0-1 

Add 2 times row 1 to row 2 
Add 1 times row 1 to rows 3 

Add -2 times row 2 to row 3 Interchange rows 3&4 

This linear system is inconsistent. 

5.f. 

Augmented Matrix 

1 2   11        7 1 2   1   1 7 1 2   1   1 7 
2 -8   2   2   -10 0 -12   0   0 -24 0 -12   0   0 -24 
2 3   2   2      12 0 -10   0 -2 

r^j 

0 0   0   0 0 
3 -2   3   3        5 0 -8   0   0 -16 0 0   0   0 0 
Add -2 times row 1 to rows 2&3 

Add -3 times row 1 to row 4 
Add -1/12 times row 2 to row 3 
Add -2/3 times row 2 to row 4 

This is row echelon form. 

This linear system has the general solution 

3-s-t 
2 
s 
t. 

Augmented Matrix 

10   2   5 
6.a.      2   3   5   5 

3   4   7   8 
Add -2 times row 1 to row 2 
Add -3 times row 1 to rows 3 

10 2 5 
0 3 1-5 
0   4   1-7 

Add -4/3 times row 2 to row 3 

1 0 
0 3 
0   0 

2 
1 

5 
-5 

=1    =1 
3 3 

Multiply row 2 by 1/3 

Multiply row 3 by -3 

1 0 2 
0 1 | 
0   0    1 

5 
-5 

Add -1/3 times row 3 to row 2 
Add -2 times row 3 to row 1 

10 0 3 
0 10-2 
0   0   1      1 
Multiply row 2 by 1/3 
Multiply row 3 by -3 

This system has a unique solution. 

6.b. 
112     5 

J2   5   7   19 
2   4   6   16 

112 5 
0 3 3 9 
0   2   2   6 

112 5 
0 3 3 9 
0   0   0   0 

Add-2 times row 1 to row 2&3     Add-2/3 times row 2 to row 3 Multiply row 2 by 1/3* 
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112 5 
0 113 
0   0   0   0 

Add -1 times row 2 to row 1 

10 12 
0 113 
0   0   0   0 

This system has infinitely many solutions. 

s is a scalar. 

Augmented Matrix 

"12   1     6 
6.C.    12   2     7 

2   4   2   15 
Add -1 times row 1 to row 2 
Add -2 times row 1 to rows 3 

12 16 
0 0 11 
0   0   0   3 

Augmented Matrix 

-1   -2   -1   -5 
6.d.        13      2      7 

2      4      2    10 
Add 1 times row 1 to row 2 
Add 2 times row 1 to rows 3 

This linear system is inconsistent. 

' _i   _2   _i   -5 " ' -1   0   1   -1 " ' 1 0 -1 1 
r^> 0      112 r^j 0   11      2 r^j ■ 0 1 1 2 

0      0      0      0 0   0   0      0 0 0 0 0 
Add 2 times row 2 to row 1 Multiply row 1 by -1 

This linear system has infinitely many solutions: 

s is a scalar. 

7. r = regular beef, d = diet beef: 

.3r   +   .2d   =     3 

.7r   +   .8d   =   10 

Solve for d in the first equation: 

d = 15-1.5r 

Substitute for d into the second equation: 

.7r + .8 (15 - 1.5r)   =   10 

-0.5r + 12   =   10 

-0.5r   =   -2 
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r   =   4 

Back substitute for r to solve for d : 

d   =   15-1.5(4) 

d   =   9. 

The butcher should make 4 pounds of regular beef and 9 pounds of diet beef. 

8. No, if a = 0 and b ^ 0, the equation becomes 0 = b, b ^ 0, which is not true. 

9. Consistent, infinitely many solutions. The system has four variables, two variables are 

independent. 

lO.a. Reduced row echelon form. 

lO.b. Row echelon form. 

lO.c. Reduced row echelon form. 

lO.d. Reduced row echelon form. 

10.e. Row echelon form 

lO.f. Neither. There is a row of zeros not at the bottom. 

lO.g. Row echelon form. 

H.a. | xj   =    -21 
x2   =   15/2 

1 ll.b. <  Xl   ~   fn x2   =   10 

xi    =   -2 
11.c. <   x2   =      1 

x3   =      3 

ll.d. Inconsistent 
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11.e. 
-15 + 2 

-1/25 + 3/2 
15 + 0 

s is a scalar. 

ll.f. 

z23 i+ 27 
2   ö        i I-   2 

2*^2 
S 

s, £ are scalars. 

ll.g. Inconsistent. 

ll.h. Inconsistent. 

12.a. 
-7/35 
-8/3s   ,    s is a scalar. 

5 

12.b. 13* ^ IS1 

5 

t 

s, tare scalars. 

12.C. 

0 
0 
0 
0 

12.d. 

-7s - 5t 
-2s -t 

s 
t 

s, t are scalars. 

12.e. 

CHAPTER TWO 

La. (2x4) (4x6) = (2x6) 

Lb. (6 x 2) (2 x 4) = (6 x 4) 

176 



I.e. (2x4)(6x 2) = undefined, 

l.d. (4x6) (6x2) = (4x2) 

I.e. (4 x 6) (2 x 4) = undefined. 

2.a. 

2.b. 

-8 
2 

-2 

-4 
3 
5 
0 

-9 

2.c. Undefined, y, and fare not the same size. 

2.d. -3 (-3) + 2 (2) + -1 (-1) = 14 

2.e. Undefined, y, and Tare not the same size. 

2.f. -1 (-3) + 3 (0) + 4 (1) + -2 (2) + -5 (-4) = 23 

2.g. V-l (-1) + 3 (3) + 4 (4) + -2 (-2) + -5 (-5) = 

2.h. cos 0 = 16 
14\/26' 

0 » 33.004c 

21 

-15 
0 
5 

10 
-20 

3.a. ,45 = 

CA = 

18     7   16 
24   16   18 BC = 

-2 
2 

6 
4 

-1   13 
C5 = 

0 4 
6 3 
6   9 

-3   1 
27   8 

-2 
5 
2 

3.b. 
-1   2 
3   4 

3.c. "'2   0   3 ' 
0   1   1 

"06" 
3.d. 2   3 

-1   5 

BD = 
' -4     2 

0   15 

11   5 " 

0 " 
18 

DC = -4   1 
0   0 
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3.e. 

3.f. 

3.g. 

3.h. 

-2 11 
-5 5 

-2 11 " 
-5 5 

1 -3 
-2 -4 

-2 0 
0 -1 

-3 -1 

3.i. -1,1 

3.j. B does not have a main diagonal because £ is not a square matrix. 

4.a. 

4.b. 

4.C. 

4.d. 

4.e. 

-9 -3 
-3 -5 
12 2 

10 6 5 
-4 5 3 
3 0 7 

-2 4 -1 " 
-2 -5 -1 
-5 4  1 

27 25 28 
-14 -5 -6 

8 1 13 

18 36 25 
-21 -1 11 
91 26 18 

4.f. -21   -7 
0    14 
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4.g. Undefined, 3C is a 2 x 3 matrix and D is a 3 x 3 matrix. 

4.h. 
54  108   75 

-63    -3   33 
57     78   54 

41 
-9      18   -33 
-3   -18   -31 
12   -36      34 

4.j. Undefined, (AB) C is a 2 x 3 matrix and 25 is a 2 x 2 matrix. 

5.a. 
-6 -1 -8 
0 8-2 
4-6      7 

5.b. Undefined, A is a 3 x 2 matrix and f is a 3 x 1 matrix. 

5.C. 
7 

-1 

5.d. 5 

6.a. Undefined, A is a 2 x 3 matrix and C is a 2 x 2 matrix. 

6.b. -20   -4 
0    10 

6.C. -6 

6.d. Undefined, 3z is a 3 x 1 matrix and B is a 3 x 2 matrix 

7.a. False, AB is a 3 x 1 matrix and BA is undefined. 

7.b. True 

179 



I.e. False, matrix multiplication us not commutative. 

8. 
x • y    = 0 orthogonal 
x • z    = 0 orthogonal 
x • w   = —4 not orthogonal 
y ■ z    = 65 not orthogonal 
y-w= 0 orthogonal 
z ■ w   — 38 not orthogonal 

9. 
u-w   =      0   orthogonal 
u ■ z    = 
tu • z   = 

-1   «»0 = ^,6 
0   orthogonal 

101.10° 

lO.a. AB is undefined, A is a 2 x 1 partitioned matrix and B is a 2 x 1 partitioned matrix. 

lO.b. A + B 
A2 

+ Bl 

B2 

= Ai + ßi 
A2 + B2 

4      4 
1   -1 

-1 
3 

-2    2 

lO.c. BC 
B2 

[C] = B2C 
. Multiplication is undefined, B\ is a 2 x 3 and C is 

a 1 x 3 matrix. B2 is a 1 x 3 matrix and C is a 1 x 3 matrix. 

H.a. [Ai   A2 ] Bi 
B2 

[Ai5i + A2B2] = 
1    7 
6   10 

ll.b. 
A2 

[B,   B2 ] = 
AiBt |  AXB2 

A2B2     A2B2 

10 6 -4 
2 0 -1 
1 9 1 
5 3 -2 

11. c. 
An     A 12 

A2\     A22 Bo 

An-Bi 4- A\2B2 

A2\B\ + A22B2 

7 
4 

T 
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12. 
Day/Class Class I Class E Class m Class IV 
Monday 1 1 0 1 
Tuesday 0 1 1 0 
Wednesday 1 0 1 1 
Thursday 0 1 1 0 
Friday 1 0 0 1 

Class I 
Class Ü 
Class HI 
Class IV 

:    2 hours / session 
:    3 hours / session 

1 hour / session 
3 hours / session 

Each table can be represented by a matrix and multiplied. 

110   1 
" 2 " 

3 
1 
3 

" 8 " 
0   110 4 
10   11 :zz 6 
0   110 4 
10   0   1 5 

hours on Monday 
hours on Tuesday 
hours on Wednesday 
hours on Thursday 
hours on Friday 

13. The tables can be represented by matrices and multiplied together. 

3 
2 
3 
4 
2 

3 
8 
3 

20 
25 
28 
23 
33 

missions on Monday 
missions on Tuesday 
missions on Wednesday 
missions on Thursday 
missions on Friday 

Two workers are required for each mission. 

" 20 " "40 * 
25 50 
28 = 56 
23 46 
33 66 

workers on Monday 
workers on Tuesday 
workers on Wednesday 
workers on Thursday 
workers on Friday 

14. The tables can be represented by matrices and multiplied together. 

50 45 60 " 
200 250 200 
350 400 300 

50 45 60 

2   112" 
12   11 = 

2   0   12 

265 '   140 155 265 
1050     700 650 1050 
1700   1150 1050 1700 

265     140 155 265 
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The budget estimate can be summarized in the following table: 

Annual Training Budget Estimate ($1,00C .00) 

Expenses/Fiscal Quarter IstQtr 2ndQtr 3rdQtr 4th Qtr Total Annual Expenses 
Equipment 265 140 155 265 825 
Fuel 1,050 700 650 1,050 3,450 
Repair Parts 1,700 1,150 1,050 1,700 5,600 
Meals 265 140 155 265 825 
Total Quarterly Expenses 3,280 2,130 2,010 3,280 10,700 

CHAPTER THREE 

La. 

l.b. 

2. 

3. 

4. 

Xl 

Xi 

3 
-2 
1 

1 -4" Xi 0 " 
3 3 X2 

= -2 
2 -1 . XZ . 2 

0 
2 
4 

4 
1 

-1 

-1 
3 

2 1 Xl r 51 
0 X2 — 6 
3 X3 2 

Xi ^     -' 

r—
1 2 " ' 1 " 8 " 

3 + x2 -1 + x3 4 = 8 
-1 -2 ' 0 -6 

5. Matrix equation: 

Sxi   + 4x2   = =   1 
-Xi     + 
23a    + 

Xi    = 

5x2   = 
=   2 
=   3 

" 2 " ' 1 " 3 " " 6 1 
1 + x2 2 + x3 -1 = 2 
0 3 1 4 

11-21 
-1   -2      3   -1 
2-1      5-1 

Xi r 11 
X2 _ -i 
Xz 4 
Xi L              J 
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\ector equation: 

Xi 

6. 

1" 1 " ' -2 " 1 " 1 " 
-1 + x2 -2 + x3 3 + x4 -1 — -1 

2 -1 5 -1 4 

—&X + 4Ü   =   5u — 15iu 

-4f   =   -4u + 5v-15w 

x   =   u- 5/4v + 15/4w 

7.a. Solve the linear system Ax = 6 for ^. 

2 
-1 

3 

4      6 
-2   -3 

1      5 

row equivalent to 
2 
0 
0 

4 6 " 
5 -4 
0 0 

#1 

X3 

7/5 
4/5 

Yes, 6 is a linear combination of the columns of A because the corresponding linear system 

is consistent. 

7.b. Solve the linear system Ax = b for x. 

1   -3   -2   -4 
-2      2      6-3 
2-8-3      2 

row equivalent to 
(•NJ 

1 -3 -2 -4 
0-4 2 -11 
0      0      0   31/2 

No, b is not a linear combination of the columns of A because the corresponding linear 

system is inconsistent. 
a 
b 
c 
d 

8. Pick an arbitrary vector in i?4, say , where a, b, c, and d are scalars. If the vectors 

vx, v2,and tf3 span i?4, then all vectors of the form 

a 
b 
c will be in Spanfvi,^,^}. We 
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need to solve the system c\V\ + c?y<i + c%vz = 

1 
-1 
0 
0 

-1 
0 
1 
0 

1 a 
0 b 
0 c 

-1 d 

row equivalent to 

a 
b 
c 
d 

1 
0 
0 
0 

for Ci, where i = 1,2,3. 

-1 1 a 
-1 1 a + b 
0 1 a+b+c 
0 0 a+b+c+d 

No, the vectors vi,v2,vs do not span Ä4 because any vector of the form 

a + b + c + d ^ 0, is not in Spanjut, t?2, #3} . 

9. Solve the system Ac — x for c. 

a 
b 
c 
d 

where 

2   -1 
4      5 

-3   -2 

-5 
-3 
4 

row equivalent to 
2 
0 
0 

1 -5 " 
7 7 
0 0 

El 

£2 

-2 
1 

Yes, äc is in the plane spanned by the columns of A because the corresponding linear system 

is consistent. 

10. Solve the linear system c\d\ + c2a2 + C303 = & for c. 

2 
4 

0 
3 

1 
0 

3 
-1 row equivalent to 

2 
0 

0 
3 

1 
2 

3 
5 

4 3 4 2 0 0 0 -9 

No, 6 is not in Spanf^, a2, a3} because the corresponding linear system is inconsistent. 

H.a. 3 

11.b. No 

11.c. Solve Ax = b for x. 

2 
-5 
6 

-1 
3 

-2 

3 
-1 

1 
8 

4   6 

row equivalent to 
2 
0 
0 

-1 
1 
0 

3 1 " 
13 21 
18 -18 
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xx "3 " 
x2 

= 8 

.Xz. 1 

Yes, b is in W. 

lid. Infinitely many. 

11.e. lai + Oa2 + Oa3 = a^ 

12.a. Solve c\x + c2y = a, for c. 

4   -1 
0      3 

5 
-1 

-2 

row equivalent to 
4   -1 
0      3 

5 
-1 

0      0    12 

No, a is not in Span{ä?, y] because the corresponding linear system is inconsistent. 

12.b. Solve c\x + c2y = & for c. 

4 
0 

-1      9 " 
3   -3 

row equivalent to 
" 4 

0 
-1 
' 3 

9 " 
-3 

-2 5   -9 0 0 0 

Cl 2 
c 2 -1 

Yes, b is in Span{:r, y} . 

13 .a. Rank is the number of linear independent rows/columns in the matrix. Using Gaussian 

elimination, the linearly independent rows are the nonzero rows when the matrix is in row 

echelon form. Rank(A) = 3. 

" 1   2 
3   7 

o" 
-5 

row equivalent to 
' 1 

0 
2 
1 

o" 
-5 

4   8 5 0 0 5 

13 .b. One way to answer this question is to note that A has 3 pivots; therefore, Ac = x has 

a unique solution. The other option is to solve Ac = x for c. 

1   2 
3 7 
4 8 

0     -1 
-5        8 
5   -14 

row equivalent to 
1 2- 0 
0 1-5 
0   0      5 

-1 
11 

-10 

Cl " -3 " 
c2 

= 1 

. C3 . -2 
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Yes, x is in the plane spanned by the columns of A. 

14. Solve Ax = b. 

7 -2 -5 -6 
3 4 1-14 
0-6      2      20 

row equivalent to 
7 -2 -5 -6 
0 34 22 -80 
0  0 100 100 

15. a. 

15 .b. Ax is undefined. 

15.C. 

Xi -1 
X2 

= -3 
x% 1 

Ax = 
Axi   —   2x2   +   5x3 
-xi   +   3x2   +   8x3 

1x\   + x2   - 2x3 

Ax = 

16. 

t 
r 
s 

T(Ü) = AÜ 
2 
0 
4 
6 

17. 
3 
1 
4 

-5 
2 
0 

0 
2 

-1 
1 
2 

2 
3 and 

-7 
14 row equivalent to 

24 
Xi "4" 
x2 

= 3 
xz _ 4 

x is unique. 

18. 

T(v) = Av 

-5 
11 
0 

2 0 
0 2 
-2 " 
-6 

-1 -7 
4  49 

30 120 

-1 
-3 

7 0 
-5 1 
6 0 

3 
-3 
4 

1 0 
3 0 
-2 0 

row equivalent to 
7 0 
0 7 
0   0 

3 
-6 
10 

1   0 
26   0 

-20   0 

19.a. a = 6,    6 = 4 

19.b. a = 3,    6 = 5 

X-L ' -L 
X2 -2s 
£3 2s 
X4 
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19.C. a 

20. Find an x whose image under T is b. 

7   0      3 
-5   1   -3 
6   0      4 

1 
3 

-2 

19 " 
-10 

row equivalent to 
"7 

0 
0 
7 

3 
-6 

1 
26 

19 
25 

12 0   0 10 -20 -30 

_i -s + 4 
X2 l-2s 
xz -3 +2s 
x4 s 

^_es, 6 is in the range of the linear transformation. 

21. This transformation is a contraction. Since r < 0, the transformation also points the 

directed line segment associated with the vector in the opposite direction. 

-0.5 0 
0 -0.5 

-0.5 0 
0 -0.5 

6 
3 

-4 
-1 

-3 
-3/2 

2 
1/2 

22. This transformation is a reflection across the line y = x 

23.a. 

23 .b. 

0 1 
1 0 

0 1 
1 0 

T{x)=Ax = 

6 
3 

-4 
-1 

3 
6 

-1 
-4 

xi - 2x2 + 3x3 

2_ci + xi - 2xs 

T{u) + T {v) = T 

23.C. 

7" 
T(S+v)=T\ -3 

( 3 " \           / 

-2 
4" 

-2 + T -1 

\ 1 /     V -3 

7 
15 

" 10 " 
2 + ' -3 ' 

13 
= 7 ' 

15 

6 " 
-4 

2 ) 
= 

" 20 " 
4 

" 10 " 
/ 

" 20 " 
2 4 
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23.d. \es, the transformation is linear because 

T(Ü + v)=T(Ü) + T(v) mdT(ru)=rT(Ü) 

24.a. Rule: 

Domain: R2.   Range: i?4. 

24.b. Rule 

2rci + a;2 

—Xi + 3x2 

x1 -x2 

4x2 

3x i - 2x2 + Axz + rc4 ] 

Domain: Ä4.   Range: Ä1. 

25.a. 

T(u + v) = T 
u2 + v2 

+ V\ T{u) + T (v) = 

Since T (u + v) ^ T (u) + T (v), this"is not a linear trans: 

R\ 

25.b. 

(u2 + v2f 
u1+v1 

uj + v* 
brmation. Domain: R'2. Range: 

T{u + v) = T 
«1 -\-v1 

U2 + V2 

U3 +V3 

2 (ux + vt) + 2 (u2 + v2) 
(«i +' v{) - 2 (u2 + v2) + 3 (u3 + v3) 

T{u)+T(v) 2ui + 2u2 

Ui — 2u2 + 3tt3 
+ 2vx + 2v2 

Vi - 2v2 + 3v3 

2ui + 2u2 + 2vx + 2v2 

ui - 2u2 + 3u3 + vi - 2v2 + 3-Ü3 

T (ru) = T 
rui 
ru2 

2rui + 2ru2 

rui — 2ru2 + 3ru3 
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rT(ü) 2ui + 2u2 

«i — 2«2 + 3u3 

2ru1 + 2rii2 

rui — 2ru2 + 3ru3 

This is a linear transformation. Domain: R3. Range: R2. 
xx 

2x\ + x2 26. a)T 
X2 

/ r       i \ Xx 

a)T( 
Xo = 

2 

L ^3 J 
Linear transformation Not a linear transformation 

b) Domain: R2.    Range: R3. 

c)T 

e) 

CHAPTER FOUR 

1. A'1 = 

r 4" 
r 

4 u 9 \ 1 / \L         J / i 

1   0 
A = 2   1 

0   1 

"10" r A i "4" 
2   1 

1 
= 9 

0   1 1 

1 "31" 
5   2 

= "31" 
5   2 (2)(3)-(-l)(-5) 

1 " 1   -2 ' 
3      4 

= 
"  i     -i " 

*?  s 
.10         5   . 

(4)(l)-(2)(-3) 

l1'   fl 

£- 

c-2 = 

2.    A: Add -2 times row 1 to row 2. 

B'Add 5 times row 1 to row 2. 

C: Not an elementary matrix. 

D: Interchange row 2 & 3. 

E: Not an elementary matrix. 

b) Domain: R2.   Range: R3 

c)T 
4 
1 

d)N/A    e)N/A 

4 
2 
1 

189 



F: Add 1 times row 2 to row 4. 

3.a. Ei = 
1/2   0 

0   1 E,= 
1 
0 

3.b. A'1 = E2Ei = 
1 
0 

-2 
1 

1/2   0 
0   1 

3.C. ^ ^r1^-1 2   0 
0   1 

1   2 
0   1 

4.      f = A"16 = 

5.a. 

1 
0 
0 

7   -8 
-4      5 

1   -1 

7   -13 
-2       5 
-2        3 

1   0   0 
0   1   0 
0   0   1 

5 
-2 
-1 

3 1       I" -6 " 
4=4 
5 J       [    1 

1   -1 
-4      5 
7   -8 

1 
-3 

5 
Interchange rows 1 and 3 

0   0 
0   1 
1   0   0 

Add 4 times row 1 to row 2 
Add -7 times row 1 to row 3 

-1     1 
1     1 

-1   -2 

0   0      1 
0 1      4 
1 0   -7 

Add 1 times row 2 to row 3 

1 
0 
0 

-1    1 
1    1 
0   -1 

0   0 
0   1 
1 1 

1 
4 

-3 
Multiply row 3 by -] 

1 -l 1 
Oil 
0      0   1 

0      0   1 
0      1   4 

-1   -1   3 

1 
0 
0 

-1 0 
1 0 
0   1 

1 
1 

-1 

1 
2 

-1 
Add 1 times row 2 to row 1 

5.b. B~l 

5.C. C"1 = 

23   -7 
-16      5 
10   -3 

-7 5 3 
3 -2 -2 
3   -2   -1 

-2 
1 
3 

3 
-2 

1 

1 0 0 
0 1 0 
0   0   1 

2      3 
1      2 

-1   -1 

-1 
1 
3 

Add -1 times row 3 to rows 2 & 1 

A-x = 
2 3 -1 
1 2 1 
1 -1 3 

S.d. 
1      0      3 

-2      1   -9 
4   -1    16 

1 0 0 
0 10 
0   0   1 

Add 2 times row 1 to row 2 
Add -4 times row 1 to row 3 

1 0 3 1   0   0 
0 1 -3 2   10 
0 -1 4 -4   0   1 

Add 1 times row 2 to row 3 

1 0 3 
0 1 -3 
0   0      1 

1 0   0 
2 1   0 

-2   1    1 
Add 3 times row 3 to row 2 
Add -3 times row 3 to row 1 

1 0 0 
0 1 0 
0   0   1 

7 -3 -3 
4 4 3 
2 1 1 

D- 
7 -3 -3 

-4 4 3 
-2 1 1 
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6. Solve the equation: 

Ly = b 

using forward substitution. This gives us: 

1 0   0" V\ -i" 
1 1   0 V2 = .7 
3 -2   1 . y*. -16 

We obtain: 
" -1 

6 
-1 

Solve the equation: 

Ux = y 

using backward substitution. This gives us: 

3 
0 
0 

5 2 " Xi ' ' -1 " 
4 -2 x2 = 6 
0 1 . X3 . -1 

We obtain: 

x 

i-y 
3 " ' ~S 1 

-1 ,     x = 1 
-2 2 

2 
1 

-1 

8.a. Use Gaussian elimination to reduce the matrix to row echelon form to get U. Store the 

negative multiplier in L. 

L = 
1   0   0 -2   4 3 
2   1   0 ,   u = 0   2 -3 
1   3   1 0   0 1 

8.b. Use Gaussian elimination to reduce the matrix to row echelon form to get U. Store the 

negative multiplier in L. 

L = 

8.C. Use Gaussian elimination to reduce the matrix to row echelon form to get U. Store the 

1   0   0 5 -1 3 
3   1   0 ,   u = 0 4 -1 
4   2   1 0 0 -2 

191 



negative multiplier in L. 

1   0 0   0 7 -2 4 -3 
4   1 0   0 ,   u = 0 1 5 2 
1   2 1   0 0 0 -1 2 
1   3 -2   1 0 0 0 -4 

L = 

8.d. Use Gaussian elimination to reduce the matrix to row echelon form to get U. Store the 

negative multiplier in L. 

9.a. Expand along row 2. 

1   0   0 2 -1 6 
6   1   0 ,   u = 0 5 3 
4   3   1 0 0 -4 

\A\   =   2 4 2 
5 1 

4 
5 

2 (-6)-3 (13) 

-12-39 

-51 

-1 
2 

9.b. Expand along row 1. 

\B\   =   2 
2   1 

-1   2 -1 
-1   1 
1   2 

=   2(5)-l(-3) + l(-l) 

=   10 + 3-1 

=   12 

+ 1 -1 
1 

9.C. Determinant is undefined for matrices which are not square. 

lO.a. Reduce A to row echelon form, keeping track of the affect of row operations on the 

determinant of the resulting matrix. 

1 2 -3 " 
1 7 -4 rs.1 

2 4 -5 

1 2 
0 5 
0   0 

-3 
-1 

det (A) = (1) (5) (1) = 5. 
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lO.b. Reduce B to row echelon form, keeping track of the affect of row operations on the 

determinant of the resulting matrix. 

det (B) = 40 

11. 

12.a. The determinant of the matrix 

det (A) = 90 
1      4   3' 

-2      6   2 
-3   -2   1 

is not equal to zero, the columns of the matrix are linearly independent. 
12-1" 

12.b. The determinant of the matrix 

is equal to 60. Since the determinant 

1 1      1 
^-10      2j 

is not equal to zero, the columns of the matrix are linearly independent 
2 4      8 ' 
2   -6   -7 

"2      2      1 _, 
is equal to zero, the columns of the matrix are linearly dependent 

is equal to -5. Since the determinant 

12.b. The determinant of the matrix is equal to 0. Since the determinant 

lependent. 

13.a. Compute the determinants of the matrices A, Axb, and A2b. 

x = 

\A\ = 

A$ = 

A2b 

-24/8 
8/8 

8 

-24 

8 

-3 
1 

13.b. Compute the determinants of the matrices A, Axb, A2b, and A3b. 

\A\ = 

Axb = 

A2b = 

AS = 

x = 

10 

-60 

30 

20 

-6 
3 
2 
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13.c. Compute the determinants of the matrices A, A{b, A2b, and A3b. 

\A\ 

Axb 

A2b 

Azb 

-14 

-126 

20 

-75 

x 
9 

-10/7 
75/14 

13.d. Compute the determinants of the matrices A, Axb, and A2b. 

x = 

\A\ = 19 

Atb = 57 

A2b    =   19 

57/19 
19/19 

3 
1 

13.e. Compute the determinants of the matrices A, Aib, and A2b. 

\A\ = -2 

A1b = -4 

A2b    =    2 

x = -4/-2 
2/-2 

2 
-1 

CHAPTER FIVE 

l.a. To find the characteristic polynomial, calculate 

det (A - XI). 
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This gives us: 

2-A 5 
4   1-A 

=   (2-A) (1-A)-20. 

=   A2-3A-18. 

To find the eigenvalues, compute the roots of the characteristic polynomial: 

A2 - 3A - 18 = 0 

This equation factors into 

(A-6)(A + 3) = 0. 

The eigenvalues are Xt = 6, A2 = -3. Now find the associated eigenvectors for each 

eigenvalue by solving the homogeneous system 

{A -XI)x = 0. 

For Ai = 6 we obtain 
-4      5 
4   -5 

We find that one variable is free. Let x2 = s, and xx 

~ 5/4 
1 

0 
0 

= is. 

Xi = 6 is x = s 

he eigenvector associated with 

,5^0. 

For Ax = —3 we obtain 

We find that one variable is free. 
-1 

5   5 
4   4 

Xl 

X2 

0 
0 

Xi = 6 is x = t 

-et #2 = t, anda^i = —t. The eigenvector associated with 

i^O. 

l.b. To find the characteristic polynomial, calculate 

This gives us: 

det (A - XI) 

3-A       -5 
0   2-A 

195 



=   (3-A)(2-A) 

=   A2-5A + 6. 

To find the eigenvalues, compute the roots of the characteristic polynomial: 

A2 - 5A + 6 = 0 

This equation factors into 

(A - 3) (A - 2) = 0. 

The eigenvalues are X1 = 3, A2 = 2. Now find the associated eigenvectors for each eigen- 

value by solving the homogeneous system 

{A -XI)x = 0. 

For Ai = 3 we obtain 
0   -5 
0   -1 

Xi 

x2 

0 
0 

We find that xx = 0 and x2 is free. Let x2 = s. The eigenvector associated with Ax = 3 is 

X = S 

For Ai = 2 we obtain 
1   -5 
0      0 X2 

0 
0 

We find that one variable is free. Let x2 = t, and xx = 5i. The eigenvector associated with 
r 51 

I.e. To find the characteristic polynomial, calculate 

det (A - XI). 

This gives us: 

3-A      0 0 
1 -A 4 
2 0   1-A 
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(3-A) -A 4 
0   1-A 

=   (3 - A) (-A) (1 - A) 

=   -A3 + 4A2-3A 

To find the eigenvalues, compute the roots of the characteristic polynomial: 

-A3 + 4A2 - 3A = 0 

This equation factors into 

-A(A-3)(A-1)=0. 

The eigenvalues are Ax = 0, A2 = 3, A3 = 1. Now find the associated eigenvectors for each 

eigenvalue by solving the homogeneous system 

(A -XI)x = 0. 

For Ai = 0 we obtain 
3   0   0 
1 0   4 
2 0   1 

Xl 

x2 

xs 
We find that xx = 0,_x3 = 0 and x2 is free. Let x2 

0 
Ai = 0 is x = s s 

0 

0 
0 
0._ 

s. The eigenvector associated with 

s^O. 

For A2 = 3 we obtain 
0 0      0 
1 -3      4 
2 0-2 

We find that one variable is: 

sociated with A2 = 3 is x = t 

Xl 

x2 

x3 

0 
0 
0 

ree. Leta;3 = t. Then xx = t and x2 = \t The eigenvector as- 
1 

5/3       , t jL 0. 
1 

For A3 = 1 we obtain 
2 0   0 " Xl "0 " 
1 -1   4 x2 = 0 
2 0   0 . Xs . 0 
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We find that xi = 0. One variable is free. Let x3 = r. Then x2 = Ar. The eigenvector 
" 0 1 

associated with A3 = 1 is x = r    4     ,r^0 
1 J 

l.d. The characteristic polynomial is: -A3 + 6A2 - 5A. The eigenvalues and associated 

eigenvectors are Aj = 0, xx = 
-1/5x2 

X2 

2/5x2 

x3 = 
0 
0 

X3 

,    A2 = 5,x2 

2x3 

0 
x3 

,    A3 = 1, 

l.e The characteristic polynomial is: -A3 + 2A2 + 5A - 6. The eigenvalues and associated 

eigenvectors are Ax = 1, xi = 
0 
0 

x3 

A9 -2,x2 = 

xz 
2x2 

X2 

2x2 

-3/2x3 

0 
x3 

i     ^3  —  3, 

l.f.   The characteristic polynomial is:  -A4 - 7A3 + 12A2.   The eigenvalues and asso- 

ciated eigenvectors are A2 = 0, x\ = 

0 
x-i 

x3 

0 

Xz 

A2 = 0,x2 = 

—2x4 

0 
-4/3x4 

x4 

,    A4 = 4, x4 = 

2. A = 2 is an eigenvalue of 

2x3 

0 
x3 

0 

0 
x2 

x3 

0 

>    A3 — 3, 

4   1 
2   3 if there is a vector x which satisfies the equation 

4   1 
2   3 

Xi 

x2 

X\ 

x2 

This gives us 

4xi + x2   =   2x! 

2xi + 3x2   =   2x2. 

which can be rewritten 

2xx + x2   =   0 
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2xi + x2   =   0. 

1 
-2 

This is a system with one equation and two variables. Let xx = t. x = t 

we found a vector which satisfies the equation, we say A = 2 is an eigenvalue of 

with associated eigenvector = t 

1 
4 is an eigenvector of 

1 
-2 

6   2 " 
3   1 

. Since 

4   1 " 
2   3 

if there is a scalar A which satisfies the equation 

"62" 
3   1 

" 1 ' 
4 = A 

" 1 " 
4 

This gives us 

1 
4 

4. 18+2i 

14 
7 ^A 

is not an eigenvector of 6   2 
3   1 

1 
4 

4-8» 2 _ 4 • 
10 5        5? 

5. 3+3i 
A    (2-2Q(3-i) 
U-    (3+0(3-0 

7. (2 - 4i) (3 + 6i) = 30 
g    (6-t)(l+2i) =  (8+110(5-30        73+31» _ 73    ,   31 • 

•    (4-0(1+0 (5+30(5-30 34      — 34 "^ 34 Z 

9. i3 + 3i2 - 4 - -i - 3 - 4 = -7 - i 

10. v/9Tl6 = ^5 = 5 

11. v
/25 + 4 = V29 

12.a. 0 = - 
4 

12.b. |z| = v7^ = 4V2,    z = Ay/2 (cos- + isin-) 
V      4 4/ 

13.a. (0 + 4i)(2 + 2^) = -8 + 8i 

13.b. \z\ =4,     \w\ 2v^,     arg (2) = -,     arg (iw) = ~. 

A (      n     ■  .   n\ 
Z   =      VCOS2 +zsm2) ' 

w;   =   2\/2 (cos - + isin - ] . 
V      4 4/ 
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13.C. 

zw = 8V2 I cos —- + i sin — ) 
V       4 A) 

D.d. 

(4z)3 = 64i3 = -64? 

13.e. 
3        ,Z ( 37T        .   .     37r\ 

2  =4     cos—+i sm — 1 

14.a. z = 2 + 4i,     1^1 = 720 = 2^5,    arg (z) = tan"1 2, 

2 = 2\/5 (cos (tan-1 2) + i sin (tan-1 2)) 

14.b. z = 4-i,    \z\ = y/Vf,    arg(z) =tan~1 (=f) , 

z = Vvf I cos I tan-1 ( —— 1 J + % sin ( tan-1 I — 

14.C. z = 6 + 3i,    \z\ = V45 = 3>/5,    arg (z) = tan"1 Q) 

z = 3\/5 I cos I tan"1 ( - j J + i sin (tan"1 ( 

15. z = -V2 + ^/2i 

16. z = I64. This means z4 = 16. In polar form 

z4 = 16 (cos 0 + i sin 0). 

i 
We want to find the fourth roots of z , or (z )4 . 

z = 16* (cos-(0 + 2/c7r)+isin-(0 + 2A;7r) J ,     fe = 0,1,2,3. 

For /c = 0,this takes on the value 

2 (cos 0 + % sin 0) = 2. 

For k = 1, this takes on the value 

n( 27T        .   .     27f\ / TX .     7T\ 
2    cos —- + % sm —     = 2   cos - + % sm — ) = 2i. 

V       4 4 y V       2 2/ 
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For k = 2, this takes on the value 

2 (cos ix + i sin 7r) = —2. 

For A; = 3, this takes on the value 

0 /      3TT     . .   3TT\ 
2 I cos — + % sin — 1 = —2i. 

17.a. ei+*f = ef (cosf +isin|) = ef (0 + i) = ief 

17.b. e3-5i = e3 (cos (-5) + i sin (-5)) = e3 cos (-5) + ie3 sin (-5). 

18.a. 4i = 4e'2 

18.b. l+i = v^e^f 

.z = =2+:ifh    \z\ = Vl=i,    6 = taxT1 y/H = & 

2TT      . .   2TT 
z = cos — + i sm — 

o o 

**= (cos2 (y+2/C7r) +isinKy+2A:7r))' k = °,1 

For A; = 0, this takes on the value 

(co4 (T) +isin5 (f)) " (cos5 + istaf) = 5 + <T 
For A; = 1, this takes on the value 

H(f+*)+<-KT+*)) ■ H(T)+'-KT 
/ 47T        .    .     47T\ 

-1      .V^ 

20. z = l = (cos 0 + i sin 0) 

z* = fcos-(2A;7r)+isin-(2fc7r)V    A; = 0,1,2,3,4,5. 

For A; = 0, this takes on the value 

cos 0 + i sin 0 
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For k = 1, this takes on the value 

For k = 2, this takes on the value 

7T        . 7T 
cos — + % sm — 

o o 

2TT     . .   2TT 
cos — + % sm — 

o o 

For A; = 3, this takes on the value 

cos 7T + i sin 7r 

For A; = 4, this takes on the value 

For A; = 5, this takes on the value 

47T        .   .     4-7T 
cos — +1 sm —- 

o o 

5n        .   .     Ö7T 
cos — + 2 sm — 

o o 

21. Aj = 2i,    ^ = x2 

22. Ax = — 1 + i,    x — x2 

1-i 
1 

-3+i 
5 
1 

,    A2 = —2i,   x = x-i 

A2 = — 1 — i,    x = rr2 

-l+i 
1 
r   -3-i 
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